MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Recitation: February 10th, 2009

1. Logarithmic spiral.
2. (Birkhoff-Rota: p. $6, \# 6$) Show that the functions of $y^{\prime}=g(y)$, for any continuous function $g(y)$ are either all increasing or decreasing functions in any strip $y_{i-1}<y<y_{i}$ between successive zeros y_{i} of g.
3. (Birkhoff-Rota: p. 11, \#3) Find all solutions of the ODE $x y^{\prime}+(1-x) y=0$, then do the same for the equation $x y^{\prime}+(1-x) y=1$.
4. (Birkhoff-Rota: p. 11, \#10) Show that the ellipses $5 x^{2}+6 x y+5 y^{2}=C$ are integral curves of the ODE

$$
(5 x+3 y)+(3 x+5 y) y^{\prime}=0
$$

What are its solution curves?
5. Solve $y^{\prime}+y \cos x=\cos x$ first by the method of integrating factors, and then by the method of variation of parameters.
6. Show that the solution of $2 y^{\prime \prime}=3 y^{2}$ with $y(0)=0$ and $y^{\prime}(0)=1$ is given implicitly by

$$
\int_{0}^{y} \frac{d t}{\sqrt{1+t^{3}}}=x
$$

This is an example of an elliptic integral.

