MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Recitation: February 5th, 2009

1. Consider the equation $y^{\prime \prime}+y^{\prime}=2 y$. For what a is $e^{a y}$ a solution? Find a solution y_{0} to $y^{\prime \prime \prime \prime}+y^{\prime \prime \prime}=2 y^{\prime \prime}$ with exponential growth as $x \rightarrow-\infty$ and $\lim _{x \rightarrow \infty} y_{0}(x) / x=1$.
2. Suppose that if y_{0} is a solution to $y^{\prime \prime}+y^{\prime}-2 y=F(x)$ on all of $(-\infty, \infty)$, then there is another solution y_{1} to the same equation with $\left|y_{1}(x)-y_{0}(x)\right| \rightarrow 0$ as $x \rightarrow \infty$.
3. Show that $y=e^{x}$ and $y=\cos x$ cannot be solutions of the same first-order equation $y^{\prime}=f(x, y)$ on any interval containing the origin.
4. Solve $y d x+3 x d y=14 y^{4} d y$.
5. Suppose that a trajectory of $\left(3 x^{2}-y\right) d x+\left(3 y^{2}-x\right) d y=0$ contains the point $(1,1)$. Show that it also contains the points $(1,-1),(-1,1),(0,1)$, $(1,0)$.
6. (Birkhoff-Rota: p. 6, \# 7) Show that solutions of $y^{\prime}=g(y)$ are convex up or convex down for given y according as $|g|$ is an increasing or decreasing function there.
