MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

LECTURE 28. REPEATED EIGENVALUES AND THE MATRIX EXPONENTIAL

Repeated eigenvalues. Again, we start with the real $n \times n$ system

$$
\begin{equation*}
\vec{y}^{\prime}=A \vec{y} . \tag{28.1}
\end{equation*}
$$

We say an eigenvalue λ_{*} or A is repeated if it is a multiple root of $p_{A}(\lambda)$. That is, $p_{A}(\lambda)$ has $\left(\lambda-\lambda_{*}\right)^{2}$ as a factor. We suppose that λ_{*} is a double root of $p_{A}(\lambda)$, so that in principle two linearly independent solutions of (28.1) correspond to λ_{*}. If \vec{v}_{*} is the corresponding eigenvector, then $\vec{y}=\vec{v}_{*} e^{\lambda_{*} t}$ is a solution. The problem is to find the second solution of (28.1), linearly independent of \vec{y}_{*}. We first discuss an easy case.

Example 28.1 (The complete case). Still supposing that λ_{*} is a double root of $p_{A}(\lambda)$, we say λ_{*} is a complete eigenvalue if there are two linearly independent eigenvectors corresponding to λ_{*}, say \vec{v}_{1} and \vec{v}_{2}. Using them, we obtain two linearly independent solutions of (28.1), namely

$$
\vec{y}_{1}(t)=\vec{v}_{1} e^{\lambda_{1} t} \quad \text { and } \quad \vec{y}_{2}(t)=\vec{v}_{2} e^{\lambda_{1} t}
$$

Exercise. Let A be a 2×2 matrix. If λ is a repeated and complete eigenvalue of A, show that

$$
A=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right) .
$$

The converse holds true.
In general, if an eigenvalue λ_{*} of A is k-tuply repeated, that is, $p_{A}(\lambda)=|A-\lambda I|$ has the power $\left(\lambda-\lambda_{*}\right)^{k}$ as a factor, but no higher, the eigenvalue is called complete if k linearly independent eigenvectors correspond to λ_{*}. In this case, these eigenvectors produce k linearly independent solutions of (28.1). An important result in linear algebra is that if a real square matrix A is symmetric, that is, $A=A^{T}$, then all its eigenvalues are real and complete.

However, in general, an eigenvalue of multiplicity $k(>1)$ has less than k eigenvectors, and we cannot construct the general solution from the techniques of eigenvalues.

The matrix exponential. To motivate, the initial value problem

$$
y^{\prime}=a y, \quad y(0)=1
$$

has the solution $y(t)=e^{a t}$ in the form of exponential. We want to define the expression $e^{A t}$ for a general $n \times n$ matrix $A, n \geqslant 1$, so that $Y(t)=e^{A t}$ is a solution of

$$
Y^{\prime}=A Y, \quad Y(0)=I
$$

and moreover $e^{A t}$ is easy to compute.
Recall that if a is a real number then

$$
e^{a t}=1+a t+\frac{(a t)^{2}}{2!}+\cdots+\frac{(a t)^{n}}{n!}+\cdots=\sum_{n=0}^{\infty} \frac{(a t)^{n}}{n!},
$$

where $t \in \mathbb{R}$. A natural way to define the matrix exponential $e^{A t}$, for an $n \times n$ matrix A, seems to use the series expression

$$
\begin{equation*}
e^{A t}=I+t A+\frac{t^{2} A^{2}}{2!}+\cdots+\frac{t^{n} A^{n}}{n!}+\cdots=\sum_{n=0}^{\infty} \frac{t^{n} A^{n}}{n!} \tag{28.2}
\end{equation*}
$$

In order to make sense of the above expression, we first introduce the matrix norm.
Definition 28.2. For an $n \times n$ matrix A, define the matrix norm as

$$
\|A\|=\sup _{\vec{y} \neq 0} \frac{|A \vec{y}|}{|\vec{y}|},
$$

where $|\vec{y}|=\left|\vec{y}^{T} \vec{y}\right|^{1 / 2}=\left(y_{1}^{2}+\cdots+y_{n}^{2}\right)^{1 / 2}$ and $|A \vec{y}|=\left|(A \vec{y})^{T}(A \vec{y})\right|^{1 / 2}$.
Exercise. Show that

$$
\|A+B\| \leqslant\|A\|+\|B\|, \quad\|A B\|=\|A\|\|B\|, \quad\|t A\|=|t|\|A\|
$$

for any matrices A, B and for any $t \in \mathbb{R}$.
For a matrix-valued function $A(t)=\left(a_{i j}(t)\right)_{i, j=1}^{n}$, then $A(t) \rightarrow A\left(t_{0}\right)$ means equivalently:
(i) $a_{i j}(t) \rightarrow a_{i j}\left(t_{0}\right)$ as $t \rightarrow t_{0}$ for all $1 \leqslant i, j \leqslant n$.
(ii) $\left\|A(t)-A\left(t_{0}\right)\right\| \rightarrow 0$ as $t \rightarrow t_{0}$.

Under the matrix norm, the infinite series (28.2) converges for all A and for all t, and it defines the matrix exponential.

We now compute the derivative of $e^{A t}$ by differentiating the right side of (28.2) term by term

$$
\begin{aligned}
\frac{d}{d t} e^{A t} & =\frac{d}{d t}\left(I+t A+\frac{t^{2} A^{2}}{2!}+\cdots+\frac{t^{n} A^{n}}{n!}+\cdots\right) \\
& =A+t A+\cdots+\frac{t^{n-1} A^{n}}{(n-1)!}+\cdots \\
& =A e^{A t}
\end{aligned}
$$

Moreover, since $e^{A 0}=I$, by definition, the matrix exponential $e^{A t}$ is a solution of

$$
Y^{\prime}=A Y, \quad Y(0)=I
$$

Theorem 28.3. Let $Y(t)$ be a fundamental matrix of A. Then $Y(t)=Y(0) e^{A t}$.
For several classes of A, the infinite series in (28.2) can be summed up exactly.
Exercise. 1. Show that $\exp \left(\operatorname{diag}\left(\lambda_{1} \ldots \lambda_{n}\right)\right)=\operatorname{diag}\left(e^{\lambda_{1}} \ldots e^{\lambda_{n}}\right)$.
2. Show that if $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ then $e^{A t}=\left(\begin{array}{ll}0 & t \\ 0 & 0\end{array}\right)$.

Exercise. Prove the exponential law

$$
\begin{equation*}
e^{(A+B) t}=e^{A t} e^{B t} \quad \text { if } \quad A B=B A \tag{28.3}
\end{equation*}
$$

We use (28.3) to compute the matrix exponentials of more matrices.
Example 28.4. Let $A=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$. We write $A=B+C$, where

$$
B=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right), \quad C=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

Since $B C=C B$, by the results from the previous exercise and by (28.3)

$$
e^{A t}=\left(\begin{array}{cc}
e^{2 t} & 0 \\
0 & e^{2 t}
\end{array}\right)\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)=e^{2 t}\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right) .
$$

Finding the fundamental matrix. In general, it doesn't seem possible to express $e^{A t}$ in closed form. Nevertheless, we can find n independent vectors for which $e^{A t}$ can be computed exactly.

The idea is to write

$$
e^{A t} \vec{v}=e^{(A-\lambda I) t} e^{\lambda I t} \vec{v}=e^{(A-\lambda I) t} e^{\lambda t} \vec{v} .
$$

If $(A-\lambda I)^{m} \vec{v}=0$ for some integer $m>0$, then $(A-\lambda I)^{m+l} \vec{v}=0$ for all integers $l \geqslant 0$. Hence,

$$
e^{(A-\lambda I) t} \vec{v}=\vec{v}+t(A-\lambda I) \vec{v}+\cdots+\frac{t^{m-1}}{(m-1)!}(A-\lambda I)^{m-1} \vec{v}
$$

is a finite sum, and

$$
e^{A t} \vec{v}=e^{\lambda t}\left(\vec{v}+t(A-\lambda I) \vec{v}+\cdots+\frac{t^{m-1}}{(m-1)!}(A-\lambda I)^{m-1} \vec{v}\right)
$$

can be computed exactly, although $e^{A t}$ itself cannot be computed.
Example 28.5. Solve the system $Y^{\prime}=A Y$, where

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right) .
$$

SOLUTION. Its characteristic polynomial is $p_{A}(\lambda)=(1-\lambda)^{2}(2-\lambda)$, and it has a double root $\lambda=1$ and a simple root $\lambda=2$.

If $\lambda=1$, then

$$
(A-\lambda I) \vec{v}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \vec{v}=0
$$

has a solution $\vec{v}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$. Furthermore, it is the only eigenvector for $\lambda=1$ up to a constant multiple. (In fact, the well-known result from linear algebra tells us that the solution space of the above linear system of equations has dimension 1.) One solution of the system $Y^{\prime}=A Y$ is obtained and $\vec{y}_{1}(t)=e^{t}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.

To find the second solution associated to $\lambda=1$, we compute

$$
(A-\lambda I)^{2} \vec{v}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \vec{v}=0
$$

has a nontrivial solution $\vec{v}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, linearly independent to v_{1}. On the other hand, $(A-I) \vec{v}_{2} \neq 0$. Thus,

$$
e^{A t} \vec{v}_{2}=e^{t}\left(I+t(A-I) \vec{v}_{2}\right)=e^{t}\left(\begin{array}{l}
t \\
1 \\
0
\end{array}\right)
$$

and it gives an additional solution of the system $Y^{\prime}=A Y$ associated to $\lambda=1$.
Finally, if $\lambda=2$ then

$$
(A-2 I) \vec{v}=\left(\begin{array}{ccc}
-1 & -1 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \vec{v}=0
$$

has a solution $\vec{v}_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. Hence, $\vec{y}_{3}(t)=e^{2 t}\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
The general solution of the system $Y^{\prime}=A Y$ can be written as

$$
Y(t)=\left(c_{1}+t c_{2}\right) e^{t} \overrightarrow{v_{1}}+c_{2} e^{t} \overrightarrow{v_{2}}+c_{3} e^{2 t} \overrightarrow{v_{3}} .
$$

It is analogous to that for the scalar differential equations with multiple roots.
We conclude the lecture by the following important result in linear algebra.
Theorem 28.6 (Cayley-Hamilton Theorem). Any square matrix A satisfies $p(A)=0$, where p is the characteristic polynomial of A.

Proof. Recall the formula

$$
\operatorname{adj}(A-\lambda I) \cdot(A-\lambda I)=p(\lambda) I .
$$

Both sides are polynomial expressions for $\lambda \in \mathbb{R}$. We view them as matrix polynomials, that is to say, we replace λ by a matrix. By setting $\lambda=A$ then proves the assertion.

