MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

LECTURE 27. COMPLEX SOLUTIONS AND THE FUNDAMENTAL MATRIX

Complex eigenvalues. We continue studying

$$
\begin{equation*}
\vec{y}^{\prime}=A \vec{y}, \tag{27.1}
\end{equation*}
$$

where $A=\left(a_{i j}\right)$ is a constant $n \times n$ matrix. In this subsection, further, A is a real matrix. When A has a complex eigenvalue, it yields a complex solution of (27.1). The following principle of equating real parts then allows us to construct real solutions of (27.1) from the complex solution.
Lemma 27.1. If $\vec{y}(t)=\vec{\alpha}(t)+i \vec{\beta}(t)$, where $\vec{\alpha}(t)$ and $\vec{\beta}(t)$ are real vector-valued functions, is a complex solution of (27.1), then both $\vec{\alpha}(t)$ and $\vec{\beta}(t)$ are real solutions of (27.1).

The proof is nearly the same as that for the scalar equation, and it is omitted.
Exercise. If a real matrix A has an eigenvalue λ with an eigenvector \vec{v}, then show that A also has an eigenvalue $\bar{\lambda}$ with an eigenvector $\overline{\vec{v}}$.
Example 27.2. We continue studying $A=\left(\begin{array}{cc}1 & 1 \\ -4 & 1\end{array}\right)$. Recall that $p_{A}(\lambda)=\left|\begin{array}{cc}1-\lambda & 1 \\ -4 & 1-\lambda\end{array}\right|$ has two complex eigenvalues $1 \pm 2 i$.

If $\lambda=1+2 i$, then $A-\lambda I=\left(\begin{array}{cc}-2 i & 1 \\ -4 & -2 i\end{array}\right)$ has an eigenvector $\binom{1}{2 i}$. The result of the above exercise then ensures that $\binom{1}{-2 i}$ is an eigenvector of the eigenvalue $\lambda=1-2 i$.

In order to find real solutions of (27.1), we write

$$
e^{(1+2 i) t}\binom{1}{2 i}=e^{t}\binom{\cos 2 t}{-2 \sin 2 t}+i e^{t}\binom{\sin 2 t}{2 \cos 2 t} .
$$

The above lemma then asserts that $e^{t}\binom{\cos 2 t}{-2 \sin 2 t}$ and $e^{t}\binom{\sin 2 t}{2 \cos 2 t}$ are real solutions of (27.1). Moreover, they are linearly independent. Therefore, the general real solution of (27.1) is

$$
c_{1} e^{t}\binom{\cos 2 t}{-2 \sin 2 t}+c_{2} e^{t}\binom{\sin 2 t}{2 \cos 2 t} .
$$

The fundamental matrix. The linear operator $T \vec{y}:=\vec{y}^{\prime}-A \vec{y}$ has a natural extension from vectors to matrices. For example, when $n=2$, let

$$
T\binom{y_{11}}{y_{21}}=\binom{f_{1}}{f_{2}}, \quad T\binom{y_{12}}{y_{22}}=\binom{g_{1}}{g_{2}} .
$$

Then,

$$
T\left(\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right)=\left(\begin{array}{ll}
f_{1} & g_{1} \\
f_{2} & g_{2}
\end{array}\right) .
$$

In general, if A is an $n \times n$ matrix and $Y=\left(y_{1} \cdots y_{n}\right)$ is an $n \times n$ matrix, whose j-th column is y_{j}, then

$$
T Y=T\left(y_{1} \cdots y_{n}\right)=\left(T y_{1} \cdots T y_{n}\right) .
$$

In this sense, $\vec{y}^{\prime}=A \vec{y}$ extends to $Y^{\prime}=A Y$.

Exercise. Show that

$$
T(U+V)=T U+T V, \quad T(U C)=(T U) C, \quad T(U \vec{c})=(T U) \vec{c},
$$

where U, V are $n \times n$ matrix-valued functions, C is an $n \times n$ matrix, and \vec{c} is a column vector.
That means, T is a linear operator defined on the class of matrix-valued functions Y differentiable on an interval I. The following existence and uniqueness result is standard.

Existence and Uniqueness result. . If $A(t)$ and $F(t)$ are continuous and bounded (matrix-valued functions) on an interval $t_{0} \in I$, then for any matrix Y_{0} then initial value problem

$$
Y^{\prime}=A(t) Y+F(t), \quad Y\left(t_{0}\right)=Y_{0}
$$

has a unique solution on $t \in I$.
Working assumption. $A(t), F(t)$, and $f(t)$ are always continuous and bounded on an interval $t \in I$.

Definition 27.3. A fundamental matrix of $T Y=0$ is a solution $U(t)$ for which $\left|U\left(t_{0}\right)\right| \neq 0$ at some point t_{0}.

We note that the condition $\left|U\left(t_{0}\right)\right| \neq 0$ implies that $|U(t)| \neq 0$ for all $t \in I$. We use this fact to derive solution formulas.

As an application of $U(t)$, we obtain solution formulas for the initial value problem

$$
\vec{y}^{\prime}=A(t) \vec{y}+\vec{f}(t), \quad \vec{y}\left(t_{0}\right)=\vec{y}_{0} .
$$

Let $U(t)$ be a fundamental matrix of $Y^{\prime}=A(t) Y$. In the homogeneous case of $\vec{f}(t)=0$, let $\vec{y}(t)=U(t) \vec{c}$, where \vec{c} is an arbitrary column vector. Then,

$$
\vec{y}^{\prime}=U^{\prime} \vec{c}=(A(t) U) \vec{c}=A(t)(U \vec{c})=A(t) \vec{y},
$$

that is, y is a solution of the homegeous system. The initial condition then determines \vec{c} and $\vec{c}=U^{-1}\left(t_{0}\right) \vec{y}_{0}$.

Next, for a general $\vec{f}(t)$, we use the variation of parameters by seting $\vec{y}(t)=U(t) \vec{v}(t)$, where \vec{v} is a vector-valued function. Then,

$$
\vec{y}^{\prime}=(U \vec{v})^{\prime}=U^{\prime} \vec{v}+U \vec{v}^{\prime}=A(t) U \vec{v}+U \vec{v}^{\prime}=A(t) \vec{y}+U \vec{v}^{\prime} .
$$

Hence, $U \vec{v}^{\prime}=\vec{f}(t)$ and

$$
\vec{y}(t)=U(t) \int U^{-1}(t) \vec{f}(t) d t .
$$

Liouville's equation. We prove a theorem of Liouville, which generalizes Abel's identity for the Wronskian.

Theorem 27.4 (Liouville's Theorem). If $Y^{\prime}(t)=A(t) Y(t)$ on an interval $t \in I$, then

$$
\begin{equation*}
|Y(t)|^{\prime}=\operatorname{tr} A(t)|Y(t)| . \tag{27.2}
\end{equation*}
$$

Proof. First, if $\left|Y\left(t_{0}\right)\right|=0$ at a point $t_{0} \in I$, then $|Y(t)|=0$ for all $t \in I$, and we are done. We therefore assume that $|Y(t)| \neq 0$ for all $t \in I$.

Let $Y\left(t_{0}\right)=I$ at a point t_{0}. That is,

$$
Y\left(t_{0}\right)=\left(y_{1}\left(t_{0}\right) \cdots y_{n}\left(t_{0}\right)\right)=\left(E_{1} E_{2} \cdots E_{n}\right) .
$$

Here, E_{j} are the unit coordinate vectors in \mathbb{R}^{n}, that is, the n-vector E_{j} has 1 in the j-th position and zero otherwise.

We use the derivative formula for the determinant

$$
\begin{aligned}
|Y(t)|^{\prime} & =\frac{d}{d t} \operatorname{det}\left(y_{1}(t) \cdots y_{n}(t)\right) \\
& =\operatorname{det}\left(y_{1}^{\prime}(t) y_{2}(t) \cdots y_{n}(t)\right)+\operatorname{det}\left(y_{1}(t) y_{2}^{\prime}(t) \cdots y_{n}(t)\right)+\cdots+\operatorname{det}\left(y_{1}(t) \cdots y_{n}^{\prime}(t)\right)
\end{aligned}
$$

This formula is based on the Laplace expansion formula for determinant, and we do not prove it here. Since

$$
y_{j}^{\prime}\left(t_{0}\right)=A\left(t_{0}\right) y_{j}\left(t_{0}\right)=A\left(t_{0}\right) E_{j}=A_{j}\left(t_{0}\right)
$$

where $A_{j}(t)$ is the j th column of $A(t)$, evaluating the above determinant formula at $t=t_{0}$ we obtain

$$
\begin{aligned}
\left|Y\left(t_{0}\right)\right|^{\prime} & =\operatorname{det}\left(A_{1}\left(t_{0}\right) E_{2} \cdots E_{n}\right)+\operatorname{det}\left(E_{1} A_{2}\left(t_{0}\right) \cdots E_{n}\right)+\cdots+\operatorname{det}\left(E_{1} E_{2} \cdots A_{n}\left(t_{0}\right)\right) \\
& =a_{11}\left(t_{0}\right)+a_{22}\left(t_{0}\right)+\cdots+a_{n n}\left(t_{0}\right)=\operatorname{tr} A\left(t_{0}\right) .
\end{aligned}
$$

Thus, (27.2) holds at t_{0}.
In general, let $C=Y\left(t_{0}\right)^{-1}$. Then $U(t)=Y(t) C$ satisfies

$$
U^{\prime}=A(t) U, \quad U\left(t_{0}\right)=I .
$$

Therefore, by the argument above $\left|U\left(t_{0}\right)\right|^{\prime}=\operatorname{tr} A\left(t_{0}\right)\left|U\left(t_{0}\right)\right|=\operatorname{tr} A\left(t_{0}\right)$. Since

$$
\frac{d}{d t}(|Y(t) C|)=\frac{d}{d t}(|Y(t)||C|)=|Y(t)|^{\prime}|C|, \quad \text { at } t=t_{0}
$$

it follows that $\operatorname{tr} A\left(t_{0}\right)=\left|Y\left(t_{0}\right)\right|^{\prime}\left|Y\left(t_{0}\right)\right|^{-1}$. Since t_{0} is arbitrary, the proof is complete.

