MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

LECTURE 26. EIGENVALUES AND EIGENVECTORS

We study the system

$$
\begin{equation*}
\vec{y}^{\prime}=A \vec{y}, \tag{26.1}
\end{equation*}
$$

where $A=\left(a_{i j}\right)$ is a constant $n \times n$ matrix.
When $n=1$, the above system reduces to the scalar equation $y^{\prime}=a y$, and it has solutions of the form $c e^{a t}$. For $n \geqslant 2$, similarly, we try solutions of the form $\vec{v} e^{\lambda t}$, where $\vec{v} \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{C}$. Then, (26.1) becomes

$$
\lambda \vec{v} e^{\lambda t}=A \vec{v} e^{\lambda t} .
$$

Subsequently,

$$
\begin{equation*}
A \vec{v}=\lambda \vec{v}, \quad(A-\lambda I) \vec{v}=0 . \tag{26.2}
\end{equation*}
$$

In order to find a solution (26.1) in the form of $\vec{v} e^{\lambda t}$ we want to find a nonzero vector \vec{v} and $\lambda \in \mathbb{C}$ satisfying (26.2). It leads to the following useful notions in linear algebra.

Definition 26.1. A nonzero vector \vec{v} satisfying (26.2) is called an eigenvector of A with the eigenvalue $\lambda(\in \mathbb{C})$.

These words are hybrids of English and German, and they follow German usage, "ei" rhymes with π.

We recognize that (26.2) is a linear system of equations for \vec{v}. A well-known result from linear algebra is that it has a nontrivial solution \vec{v} if and only if $A-\lambda I$ is singular. That is, $p_{A}(\lambda)=$ $|A-\lambda I|=0$, where $p_{A}(\lambda)$ is the characteristic polynomial of A. In this case, such a nontrivial solution \vec{v} is an eigenvector and the corresponding root of $p_{A}(\lambda)=0$ is an eigenvalue.

Plane systems. For a 2×2 matrix $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$, the characteristic polynomial is

$$
p(\lambda)=\left|\begin{array}{cc}
a_{11}-\lambda & a_{12} \\
a_{21} & a_{22}-\lambda
\end{array}\right|=\lambda^{2}-(\operatorname{tr} A) \lambda+\operatorname{det} A .
$$

This quadratic polynomial has two roots, λ_{1} and λ_{2} (not necessarily distinct). Let \vec{v}_{1} and \vec{v}_{2} be the eigenvectors corresponding to the eigenvalues λ_{1} and λ_{2}, respectively. By definition, $\vec{v}_{1} e^{\lambda_{1} t}$ and $\vec{v}_{2} e^{\lambda_{2} t}$ are solutions of (26.1).

If $\lambda_{1} \neq \lambda_{2}$, then the functions $\vec{v}_{1} e^{\lambda_{1} t}$ and $\vec{v}_{2} e^{\lambda_{2} t}$ are linearly independent. Hence, they form a basis of solutions of (26.1).The general solution of (26.1) is given as

$$
\vec{y}(t)=c_{1} \vec{v}_{1} e^{\lambda_{1} t}+c_{2} \vec{v}_{2} e^{\lambda_{2} t},
$$

where c_{1}, c_{2} are arbitrary constants. This shows one use of eigenvalues in the study of (26.1).
Let us define 2×2 matrices

$$
V=\left(\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array}\right) \quad \text { and } \quad \Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) .
$$

One can verify that $A V=V \Lambda$. If \vec{v}_{1} and \vec{v}_{2} are linearly independent, so that $|V| \neq 0$, then we can make the (non-singular) change of variables

$$
\vec{x}=V^{-1} \vec{y} .
$$

Then, (26.1) is transformed into $\vec{x}^{\prime}=\Lambda \vec{x}$, that is

$$
\begin{aligned}
x_{1}^{\prime} & =\lambda_{1} x_{1}, \\
x_{2}^{\prime} & =\lambda_{2} x_{2} .
\end{aligned}
$$

That is, \vec{x} solves a decoupled system. The solution of this system is immediate and $x_{1}=c_{1} e^{\lambda_{1} t}$, $x_{2}=c_{2} e^{\lambda_{2} t}$. The new variables \vec{x} is called the canonical variables, and $\Lambda=V^{-1} A V$ is called the diagonalization. This is another use of eigenvalues. Canonical variables play a major role i engineering, economics, mechanics, and indeed in all fields that makes intensive use of linear systems with constant coefficients.

Lemma 26.2. If the eigenvalues of a 2×2 matrix are distinct, then the corresponding eigenvectors are linearly independent.

Proof. Suppose that the eigenvalues $\lambda_{1} \neq \lambda_{2}$, but the eignevectors satisfy

$$
\begin{equation*}
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=0 . \tag{26.3}
\end{equation*}
$$

We want to show that $c_{1}=c_{2}=0$. Applying the matrix A to (26.3), we obtain that

$$
\begin{equation*}
c_{1} \lambda_{1} \vec{v}_{1}+c_{2} \lambda_{2} \vec{v}_{2}=0 . \tag{26.4}
\end{equation*}
$$

Subtraction then yields

$$
c_{1}\left(\lambda_{2}-\lambda_{1}\right) \vec{v}_{1}=0 .
$$

This implies $c_{1}=0$. Then, (26.3) implies $c_{2}=0$.
Example 26.3. We consider $A=\left(\begin{array}{cc}12 & 5 \\ -6 & 1\end{array}\right)$.
Its characteristic polynomial is $p(\lambda)=\lambda^{2}-13 \lambda+42=(\lambda-6)(\lambda-7)$, and A has two distinct eigenvalues, $\lambda_{1}=6$ and $\lambda_{2}=7$.

If $\lambda_{1}=6$, then $A-6 I=\left(\begin{array}{cc}6 & 5 \\ -6 & -5\end{array}\right)$, and $\binom{5}{-6}$ is an eigenvector.
If $\lambda_{2}=7$, then $A-7 I=\left(\begin{array}{cc}5 & 5 \\ -6 & -6\end{array}\right)$, and $\binom{1}{-1}$ is an eigenvector. The general solution of (26.1) is, thus,

$$
y(t)=c_{1} e^{6 t}\binom{5}{-6}+c_{2} e^{7 t}\binom{1}{-1} .
$$

The canonical variable is $\vec{x}=\left(\begin{array}{cc}5 & 1 \\ -6 & -1\end{array}\right)^{-1}\binom{y_{1}}{y_{2}}=\binom{-y_{1}-y_{2}}{6 y_{1}+5 y_{2}}$.
Exercises. 1. Show that $A=\left(\begin{array}{cc}6 & 1 \\ -1 & 8\end{array}\right)$ has only one eigenvalue $\lambda=7$, and the only corresponding eigenvector is $\binom{1}{1}$. In this case, we can't construct the general solution of (26.1) from this.
2. Show that $A=\left(\begin{array}{cc}1 & 1 \\ -4 & 1\end{array}\right)$ has two (complex) eigenvalues $1 \pm 2 i$ and the corresponding eigenvectors $\binom{1}{ \pm 2 i}$, respectively. They leads to the general (complex) solution of (26.1)

$$
c_{1} e^{(1+2 i) t}\binom{1}{2 i}+c_{2} e^{(1-2 i) t}\binom{1}{-2 i} .
$$

Higher-dimensional systems. If A is an $n \times n$ matrix, where $n \geqslant 1$ is an integer, then

$$
p_{A}(\lambda)=|A-\lambda I|
$$

is a polynomial in λ of degree n and has n roots, not necessarily distinct. That means, A has n eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, not necessarily distinct. Let $\vec{v}_{1}, \ldots, \vec{v}_{n}$ be the eigenvectors corresponding to $\lambda_{1}, \ldots, \lambda_{n}$, respectively. Let

$$
V=\left(\vec{v}_{1} \cdots \vec{v}_{n}\right) \quad \text { and } \quad \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

By definition, $\vec{v}_{1} e^{\lambda_{1} t}, \ldots, \vec{v}_{n} e^{\lambda_{n} t}$ are solutions of (26.1).
If $|V| \neq 0$, that means, if $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly independent, then they form a basis of solutions of (26.1). Moreover, $\vec{x}=V^{-1} \vec{y}$ is a canonical variable and $\vec{x}^{\prime}=\Lambda \vec{x}$. In many cases, the vectors \vec{v}_{j} can be chosen linearly independent even if λ_{j} are not all distinct. Sometimes the condition $|V| \neq 0$ is met by the following.
Lemma 26.4. If eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are distinct, then the corresponding eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly independent.
Proof. Suppose not. Let $m>1$ be the minimal number of vectors that are linearly dependent. Without loss of generality, we assume that $\vec{v}_{1}, \ldots, \vec{v}_{m}$ are linearly dependent, so that

$$
\begin{equation*}
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{m} \vec{v}_{m}=0 \tag{26.5}
\end{equation*}
$$

and some c_{j} is nonzero. We further assume that $c_{2} \neq 0$.
We now proceed similarly to Lemma 26.2. Applying A to (26.5) we obtain

$$
c_{1} \lambda_{1} \vec{v}_{1}+c_{2} \lambda_{2} \vec{v}_{2}+\cdots+c_{m} \lambda_{m} \vec{v}_{m}=0 .
$$

Multiplying by λ_{1} then

$$
c_{1} \lambda_{1} \vec{v}_{1}+c_{2} \lambda_{1} \vec{v}_{2}+\cdots+c_{m} \lambda_{1} \vec{v}_{m}=0 .
$$

Thus, we have

$$
c_{2}\left(\lambda_{2}-\lambda_{1}\right) \vec{v}_{2}+\cdots+c_{m}\left(\lambda_{m}-\lambda_{1}\right) \vec{v}_{m}=0 .
$$

Since $\vec{v}_{2}, \ldots, \vec{v}_{m}$ are linearly independent, $c_{2}=\cdots=c_{m}=0$ must hold. A contradiction then proves the assertion.

We recall that if $A=A^{T}$ then the square matrix A is called symmetric. If a complex matrix satisfies $A=A^{*}$, where A^{*} denotes the conjugate transpose or adjoint of A, then A is called Hermitian. A symmetric or a Hermitian matrix has many important properties pertaining to the study of (26.1) via eigenvalues.
(1) All eigenvalues of a symmetric matrix are real and eigenvalues of A corresponding to different eignevalues are orthogonal.

Proof. Let

$$
A \vec{u}=\lambda \vec{u}, \quad A \vec{v}=\nu \vec{v},
$$

$\vec{u}, \vec{v} \neq 0$ and $\lambda \neq \mu$. Then,

$$
\vec{u}^{T} A \vec{u}=\lambda \vec{u}^{T} \vec{u}, \quad \vec{u}^{T} A^{T} \vec{u}=\bar{\lambda} \vec{u}^{T} \vec{u} .
$$

Since $A=A^{T}$, it implies that $\lambda=\bar{\lambda}$. The second assertion is left as an exercise.
(2) A has n linearly independent eigenvectors (regardless of the multiplicity of eigenvalues).

An immediate consequence of (1) and (2) is the following.
(3) If eigenvalues are simple (multiplicity $=1$) then the corresponding eigenvectors are orthogonal.

