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UNIT VI: THE LINEAR SYSTEMS 

We study linear systems of n first-order differential equations. They are related to first-order 
matrix differential equations. When the corresponding matrix is constant, then the eigenvalues 
and the eigenfunctions of the matrix provide a useful framework to construct the general solution. 
The fundamental matrix is constructed as the exponential matrix. 

LECTURE 25. LINEAR SYSTEMS 

A linear system of n differential equations in n unknowns is 

y1
� = a11(t)y1 + + a1n(t)yn + f1(t),· · · 

y2
� = a21(t)y1 + + a2n(t)yn + f2(t),· · · 

(25.1) . . . . . . 

yn
� = an1(t)y1 + + ann(t)yn + fn(t).· · · 

Here and elsewhere, � = d/dt. In the matrix notation, 

(25.2) �y � = A(t)�y + f�(t), 

where �y = (y1(t), . . . , yn(t))T and f�(t) = (f1(t), . . . , fn(t))T are vector-valued functions defined 
on an interval t ∈ I and taking values in Rn, and A(t) = (aij(t))n is an n × n matrix-valuedi,j=1 
function defined on I . 

A matrix-valued function A(t) = (aij (t)) is said to be continuous, bounded, or differentiable if 
each element aij of A(t) is continuous, bounded and differentiable, respectively. Differentiation 
and integration are element-wise: � � � �� � 

d 
A(t) = 

daij (t) , A(t) dt = aij dt . 
dt dt 

Let us define an operator 

(25.3) L�y = �y � − A�y. 

With this notation, (25.2) is written as L�y = f�(t). The domain of the operator L is the space of 
n-dimensional vector-valued functions differentiable on I . 

Exercise. Show that L is linear. That is, 

L(c1�y1(t) + c2y�2(t)) = c1L�y1(t) + c2L�y2(t). 

Since L is linear, the fundamental principle of superposition and the principle of the comple
mentary function and other results for linear operators apply. 

Existence and Uniqueness result. If A(t) and f�(t) are continuous and bounded on an interval I 
containing t0, then for each �y0 ∈ Rn the initial value problem 

�y � = A(t)�y + f�(t), �y(t0) = �y0 

1 



� � 

has a unique solution in I . 

Working assumption. Throughout the note and the following notes, A(t) and f(t) are assumed 
to be continuous and bounded on an interval t ∈ I . 

Linear independence. The vecotrs �y1, . . . , �yn in Rn are said to be linearly independent if 

c1�y1 + c2y�2 + + cn�yn = 0 implies c1 = c2 = = cn = 0.· · · · · · 

Let Y = (�y1, . . . , �yn) be an n × n matrix whose j-th column is y�j . Then, �y1, . . . , �yn are linearly 
independent if and only if the determinant |Y | = 0� . In this case, moreover, these functios form a 
basis for the linear space Rn . 

Similarly, the vector-valued functions �y1(t), . . . , �yn(t) are said to be linearly independent on the 
interval I if 

c1�y1(t) + c2�y2(t) + + cn�yn(t) = 0 on I implies c1 = c2 = = cn = 0.· · · · · · 

This definition is more restrictive than that for vectors. But, if the functions are solutions of linear 
systems of differential equations, then their linear independence can be characterized in terms of 
the determinant of a matrix-valued function, analogous to that for vectors. 

A basis of solutions of 

(25.4) �y � = A(t)�y, 

where A(t) is a continuous n × n matrix-valued function on I , is a collection of n solutions 
�y1(t), . . . , �yn(t) so that every solution can be expressed uniquely as their linear combination 

�y(t) = c1�y1(t) + + cn�yn(t)· · · 

for constants c1, c2, . . . , cn. 

Theorem 25.1. Let �y1(t), . . . , �yn(t) be n solutions of (25.4) on I . Let Y (t) = (�y1(t), . . . , �yn(t)) be the 
n × n matrix-valued function, whose j-th column is yj (t). 

The functions form a basis of solutions if and only if |Y (t0)| = 0 � at some point t0 ∈ I . If |Y (t0)| = 0 at 
a point t0 ∈ I , then |Y (t)| = 0 for all t ∈ I . 

If |Y (t0)| = 0 then the column vectors in Y (t0) are linearly dependent. Thus, we can find 
constants cj not all zero such that 

y(t) = c1�y1(t) + + cn�yn(t)· · · 

satisfies y(t0) = 0. Moreover, y(t) is a solution of (25.4). Then, by uniqueness, y(t) = 0 for all t ∈ I . 
That is, the functions are linearly dependent on I . 

Notations. |Y (t)| = det(�y1(t) · · · �yn(t)) is called the Wronskian of �y1(t), . . . , �yn(t). 

If the columns of Y (t) are linearly independent solutions of �y � = A(t)�y then Y (t) is called the 
fundamental matrix for �y � = A(t)�y. The fundamental matrix yields the general solution, and hence 
the complete solution, of �y � = A(t)�y. This proves the assertion. 

Plane autonomous systems. When n = 2, then the system 

y1
� = a11(t)y1 + a12(t)y2,

(25.5) 
y2
� = a21(t)y1 + a22(t)y2 

is called a plane system. In the matrix notation, we write it as �y � = A(t)�y, where �y = (y1, y2) and 

Let A(t) = 
a11(t) a12(t) . 
a21(t) a22(t) 
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� � � � � � 

When aij are constants, then let φ = y1. We eliminate y2 from the system, and 

(φ� − a11φ)� = a12a21φ + a22(φ� − a11φ). 

Thus, we obtain the companion or secular equation 

(25.6) φ�� − (tr A)φ� + (det A)φ = 0 

of (25.5). 

Proposition 25.2. If (y1(t), y2(t))T is a solution of (25.5), then both y1(t) and y2(t) are solutions of the 
secular equation (25.6). 

The proof is easy and it is left as an exercise. 
Conversely, the secular equation (25.6) can be used to solve the system (25.5), by finding the 

roots of the corresponding characteristic polynomial 

λ2 − (tr A)λ + det A, 

and subsequently (25.5) can be solved. In this note, we call the quadratic polynomial as the char
acteristic polynomial of A. 

Example 25.3. We consider the linear system 

y1
� = 12y1 + 5y2, 

� 
12 5 

� 

y2
� = −6y1 + y2,

A = −6 
.1 

Its secular equations is φ�� − 13φ� + 42φ = 0, and the solutions are generated by e6t and e7t . 
If y1(t) = c1e

6t, then 5y2 = y1
� − 12y1 = −6c1e

6t. If y1(t) = c2e
7t then y2(t) = −c2e

7t. Thus, the 
general solutions of the system is 

6t 5 7t 1 
c1e + c2e . −6 −1 

Exercise. Find the general solution of 

1. A = −
6
1 8

1 . (ANSWER. c1e
t 

1
1 

+ c2e
t 
−t

t 
+ 1 

). 

1 1 cos 2t sin 2t2. A = −4 1 
. (ANSWER. c1e

t 
−2 sin 2t 

+ c2e
t 

2 cos 2t 
.) 

Review of linear algebra. We end this note by listing notations and results of linear algebra, 
useful in the study of linear system of differential equations. 

Let A = (aij ) be an n × n matrix. If the rows and the columns of A are interchanged then the 
resulting matrix is called the transpose of A, denoted by AT . It is immediate that 

(AT )T = A, (AT )−1 = (A−1)T , (AB)T = BT AT . 

A matrix is said to be symmetric if A = AT . 

We use A for the determinant of A. The (i, j)-minor of A, denoted by Mij , is the determinant 
of the (n −

|
1)
|
× (n − 1) matrix obtained when the ith row and the jth column of A are deleted. 

Then, by definition, 
|A| = a11M11 − a12M12 + · · · + (−1)n+1 a1nM1n. 

The cofactor of A, denoted by cof A, is a n × n matrix (cij )n , where i,j=1

cij = (−1)i+j Mij . 
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Then, 
|A| = a11c11 + a12c12 + · · · + a1nc1n. 

Finally, the adjugate of A, denoted by adj A, is the transpose of the cofactor matrix 

adj A = (cof A)T , (adj A)ij = cji. 

Then, follows the Laplaces expansion formula for determinant 
n n

|A| = 
j=1 

aij(cof A)ij = 
i=1 

aij (cof A)ij 

for any 1 � i, j � n. That is a determinant can be computed on any row or on any column.


Example 25.4. The adjugate of the 2 × 2 matrix A = 
a
c d

b is adj A = −
d
c 
−
a
b . 

We state a useful formula 

(25.7) A(adj A) = (adj A)A = (det A)I. 

The (i, j) entry of A(adj A) is in fact the inner product of the i-th row of A and the i-th row of cof A, 
and thus (25.7) is simply the Laplace formula. 

We define the characteristic polynomial 

(25.8) pA(λ) = det(A − λI) 

of the matrix A. Let 
pA(λ) = (−1)nλn + p1λ

n−1 + + p0.· · · 
It naturally leads to a matrix polynomial 

pA(A) = (−1)nAn + p1A
n−1 + + p0I. · · · 

An important property of the adjugate is 

(25.9) adj A = −((−1)nAn−1 + p1A
n−2 + + p1I).· · · 

Formally, adj A = 
p(0) − p(A) 

. 
A 
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