MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

LECTURE 13. INHOMOGENEOUS EQUATIONS

We discuss various techniques for solving inhomogeneous linear differential equations.
Variation of parameters: the Lagrange procedure. Let us consider the linear second-order differential operator

$$
\begin{equation*}
L y=y^{\prime \prime}+p(t) y^{\prime}+q(t) y \tag{13.1}
\end{equation*}
$$

with variable coefficients.
If a nonvanishing solution of a homogeneous equation $L y=0$ is known, then the corresponding inhomogeneous equation $L y=f$ can be solved, in general, by two integrations. It was discovered by Lagrange that if two linearly independent solutions of $L y=0$ are known, then the inhomogeneous equation $L y=f$ can be solved by a single integration.

Let u and v be a pair of linearly independent solutions of $L y=0$, and form the expression

$$
\begin{equation*}
y=a u+b v . \tag{13.2}
\end{equation*}
$$

If a and b are constant, this represents the general solution of $L y=0$. We will the inhomogeneous equation $L y=f$ by choosing a trial solution of this form, but with a and b functions of t, rather than constants. The method is called the method of variation of parameters.

Let a and b are differentiable functions of t. By differentiation,

$$
y^{\prime}=\left(a u^{\prime}+b v^{\prime}\right)+\left(a^{\prime} u+b^{\prime} v\right) .
$$

We require

$$
\begin{equation*}
a^{\prime} u+b^{\prime} v=0 \tag{13.3}
\end{equation*}
$$

so that $y^{\prime}=a u^{\prime}+b v^{\prime}$. This simplifies the calculation of the second derivative, and

$$
y^{\prime \prime}=\left(a u^{\prime \prime}+b v^{\prime \prime}\right)+\left(a^{\prime} u^{\prime}+b^{\prime} v^{\prime}\right) .
$$

Therefore,

$$
L y=y^{\prime \prime}+p y^{\prime}+q y=a L u+b L v+a^{\prime} u^{\prime}+b^{\prime} v^{\prime}=a^{\prime} u^{\prime}+b^{\prime} v^{\prime} .
$$

The second equality uses that $L u=L v=0$.
Solving $L y=f$ in the form in (13.2) then reduces to the linear system

$$
\begin{aligned}
a^{\prime} u+b^{\prime} v & =0, \\
a^{\prime \prime} u^{\prime}+b^{\prime} v^{\prime} & =f,
\end{aligned}
$$

in the unknown a^{\prime} and b^{\prime}. In the matrix form,

$$
\left(\begin{array}{cc}
u & v \\
u^{\prime} & v^{\prime}
\end{array}\right)\binom{a^{\prime}}{b^{\prime}}=\binom{0}{f} .
$$

By Cramers rule, we solve the system, and

$$
a^{\prime}=\frac{\left|\begin{array}{cc}
0 & v \\
f & v^{\prime}
\end{array}\right|}{\left|\begin{array}{cc}
u & v \\
u^{\prime} & v^{\prime}
\end{array}\right|}, \quad b^{\prime}=\frac{\left|\begin{array}{cc}
u & 0 \\
u^{\prime} & f
\end{array}\right|}{\left|\begin{array}{cc}
u & v \\
u^{\prime} & v^{\prime}
\end{array}\right|} .
$$

Here, the notation $|\cdot|$ stands for the determinant of the matrix. The denominator is the Wromskian $W(u, v)$, so that we may write them as

$$
a^{\prime}=\frac{-f v}{W(u, v)}, \quad b^{\prime}=\frac{f u}{W(u, v)} .
$$

Finally, by integration, we obtain the Lagange formula

$$
\begin{equation*}
y(t)=u(t) \int \frac{-f v}{W(u, v)} d t+v(t) \int \frac{f u}{W(u, v)} d t \tag{13.4}
\end{equation*}
$$

Lagrange's procedure extends to equations of order n and it represents an important advance in the theory of differential equations.

A similar idea already appeared. For example, when studying the linear first-order differential equations, we replaced the homogeneous solution $c e^{P}$ by $v e^{P}$, where v is a function.

Example 13.1. Consider the Euler equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=x^{2} f(x), \quad x>0, \tag{13.5}
\end{equation*}
$$

where the prime denotes the differentiation in the x-variable.
By the technique discussed in the previous lecture, we compute

$$
u=x, \quad v=x^{2}, \quad W(u, v)=x^{2} .
$$

For $x>0$, we write (13.5) as

$$
y^{\prime \prime}-\frac{2}{x} y^{\prime}+\frac{2}{x^{2}} y=f(x) .
$$

Then Lagrange's formula (13.4) gives

$$
y(x)=-x \int f(x) d x+x^{2} \int \frac{f(x)}{x^{2}} .
$$

Exercise. If $f(x)=x^{m}$, where m is a constant, in the above example, show that a particular solution of (13.5) is

$$
y_{p}(x)= \begin{cases}-x \log x & \text { if } m=-1 \\ x^{2} \log x & \text { if } m=0 \\ \frac{x^{m+2}}{m(m+1)} & \text { otherwise }\end{cases}
$$

The general solution of (13.5) is $y(t)=c_{1} x+c_{2} x^{2}+y_{p}(x)$.
The Green's function: initial value problems. As an important application of the formula (13.4) we can find an integral representation of the initial value problem for $L y=f$, where L is given in (13.1).

Let t_{0} be a point on the interval I. Integrating (13.4) from t_{0} to t,

$$
\begin{aligned}
y(t) & =u(t) \int_{t_{0}}^{t} \frac{-f\left(t^{\prime}\right) v\left(t^{\prime}\right)}{W\left(t^{\prime}\right)} d t^{\prime}+v(t) \int_{t_{0}}^{t} \frac{f\left(t^{\prime}\right) u\left(t^{\prime}\right)}{W\left(t^{\prime}\right)} d t^{\prime} \\
& =\int_{t_{0}}^{t} \frac{u\left(t^{\prime}\right) v(t)-u(t) v\left(t^{\prime}\right)}{u\left(t^{\prime}\right) v^{\prime}\left(t^{\prime}\right)-u^{\prime}\left(t^{\prime}\right) v\left(t^{\prime}\right)} f\left(t^{\prime}\right) d t^{\prime}
\end{aligned}
$$

This function satisfies the conditions

$$
y\left(t_{0}\right)=0, \quad y^{\prime}\left(t_{0}\right)=0
$$

Indeed, $y(t)=a(t) u(t)+b(t) v(t)$ and $y^{\prime}(t)=a(t) u^{\prime}(t)+b(t) v^{\prime}(t)$ where $a(t)=\frac{-f\left(t^{\prime}\right) v\left(t^{\prime}\right)}{W\left(t^{\prime}\right)} d t^{\prime}$ and $b(t)=\frac{f\left(t^{\prime}\right) u\left(t^{\prime}\right)}{W\left(t^{\prime}\right)} d t^{\prime}$.

In summary, the function defined as

$$
y(t)=\int_{t_{0}}^{t} G\left(t, t^{\prime}\right) f\left(t^{\prime}\right) d t^{\prime}, \quad G\left(t, t^{\prime}\right)=\frac{u\left(t^{\prime}\right) v(t)-u(t) v\left(t^{\prime}\right)}{u\left(t^{\prime}\right) v^{\prime}\left(t^{\prime}\right)-u^{\prime}\left(t^{\prime}\right) v\left(t^{\prime}\right)}
$$

solves the initial value problem,

$$
L y=f, \quad y\left(t_{0}\right)=0, \quad y^{\prime}\left(t_{0}\right)=0 .
$$

The function $G\left(t, t^{\prime}\right)$ is called the Green's function.
Example 13.2. We continue studying the Euler equation (13.5) satisfying the initial conditions

$$
y\left(x_{0}\right)=0, y^{\prime}\left(x_{0}\right)=0 \quad \text { for some } x_{0}>0
$$

The solution has an integral representation

$$
y(x)=x \int_{x_{0}}^{x}(x-t) \frac{f(t)}{t} d t
$$

For example, if $f(x)=x \sin x$ then

$$
y(x)=x \int_{x_{0}}^{x}(x-t) \sin t d t=x\left(x-x_{0}\right) \cos x_{0}-x\left(\sin x-\sin x_{0}\right) .
$$

Exercise. (The Green's function: boundary value problem) We consider the boundary value problem

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t) \quad \text { on }\left(t_{1}, t_{2}\right), \quad y\left(t_{1}\right)=y\left(t_{2}\right)=0 .
$$

If u and v are linearly independent solutions of the homogeneous equation $y^{\prime \prime}+p y^{\prime}+q y=0$, then show that the solution of the boundary value problem is given by

$$
y(t)=\int_{t_{1}}^{t_{2}} G\left(t^{\prime}, t\right) f\left(t^{\prime}\right) d t^{\prime}
$$

where $G\left(t^{\prime}, t\right)= \begin{cases}\frac{u\left(t^{\prime}\right) v(t)}{W\left(t^{\prime}\right)} & \text { if } t_{1} \leqslant t^{\prime} \leqslant t, \\ \frac{u(t) v\left(t^{\prime}\right)}{W\left(t^{\prime}\right)} & \text { if } t \leqslant t^{\prime} \leqslant t_{2} .\end{cases}$
The method of annihilators. We introduce another method of finding a particular solution of linear inhomogeneous differential equation with constant coefficients. Let

$$
L y=y^{(n)}+p_{1} y^{(n-1)}+\cdots+p_{n-1} y^{\prime}+p_{n} y
$$

where p_{j} are real constants. We study the differential equation $L y=f$, where f is a sum of functions of type

$$
t^{r} e^{\lambda t}, \quad t^{r} e^{\mu t} \sin \nu t, \quad t^{r} e^{\mu t} \cos \nu t
$$

Note that these functions arise as basis solutions of linear homogeneous differential equations with constant coefficients. We find a differential operator A satisfies $A f=0$, then we reduce solving $L y=f$ to solving the homogeneous equation $L A y=0$. Such an operator A is called an annihilator of f.

We illustrate with an example.

Example 13.3. We consider the differential equation

$$
\begin{equation*}
y^{\prime \prime}-5 y^{\prime}-6 y=t e^{t} \tag{13.6}
\end{equation*}
$$

Let $L=D^{2}-5 D-6=(D-2)(D-3)$. Then (13.6) is written as $L y=t e^{t}$.
By the exponential shift law for D, we recognize that $t e^{t}$ is a solution of the differential equation $(D-1)^{2} y=0$. In other words, $(D-1)^{2}$ is an annihilator of $t e^{t}$. Applying $(D-1)^{2}$ in (13.6), we obtain the homogeneous differential equation

$$
(D-2)(D-3)(D-1)^{2} y=0
$$

It is easy to see that $e^{t}, t e^{t}, e^{2 t}, e^{3 t}$ form a basis of solutions of the above equation. Hence, we set a solution of (13.6) as

$$
y(t)=c_{1} e^{t}+c_{2} t e^{t}+c_{3} e^{2 t}+c_{4} e^{3 t},
$$

and determine the constants c_{j}.
Since $L e^{2 t}=0$ and $L e^{3 t}=0$, moreover, we may set $c_{3}=c_{4}=0$. Hence,

$$
y(t)=c_{1} e^{t}+c_{2} t e^{t} .
$$

We compute

$$
L y=\left(D^{2}-5 D-6\right)\left(c_{1} e^{t}+c_{2} t e^{t}\right)=\left(2 c_{1}-3 c_{2}\right) e^{t}+2 c_{2} t e^{t}=t e^{t}
$$

to obtain $c_{1}=3 / 4$ and $c_{2}=1 / 2$. Therefore, a particular solution of (13.6) is $y(t)=3 / 4 e^{t}+1 / 2 t e^{t}$.

