MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

LECTURE 10. MAXIMUM PRINCIPLE

By considering the points where a function attains a maximum or minimum one can get a good deal of information about the solutions of a differential equation without solving it.

We begin with a review of terminology. A point x is interior to an interval I if x is in I but is not an endpoint. An interval is bounded if its length is finite and closed if it contains its endpoints. For example, $1<x \leqslant 2$ is bounded but not closed and $1 \leqslant x \leqslant 2$ is bounded and closed, $x>1$ is neither bounded nor closed.

A real-valued function $f(x)$ defined on the interval I of x is said to have a maximum at x_{0} if $x_{0} \in I$ and $f\left(x_{0}\right) \geqslant f(x)$ on $x \in I$. The maximum is called interior if x_{0} is an interior point of I and it is called positive if $f\left(x_{0}\right)>0$. The "negative interior minimum" is defined similarly.

If the inequality $f\left(x_{0}\right) \geqslant f(x)$ is required to hold only in some open interval $J \subset I$, with $x \in J$ and $x_{0} \in J$ then the maximum is said to be local. In what follows, we use the terms maximum and minimum to mean local maximum and local minimum, respectively.

We recall the following theorem of calculus.
Theorem 10.1. A continuous real-valued function on a bounded closed interval attains its maximum and minimum on the interval.

At an interior maximum or minimum x_{0} a differentiable function f satisfies $f^{\prime}\left(x_{0}\right)=0$. If f is twice differentiable then f satisfies the additional condition $f^{\prime \prime}\left(x_{0}\right) \leqslant 0$ at a maximum and $f^{\prime \prime}\left(x_{0}\right) \geqslant 0$ at a minimum. Thus, at a positive interior maximum a twice-differentiable function f satisfies

$$
\begin{equation*}
f\left(x_{0}\right)>0, \quad f^{\prime}\left(x_{0}\right)=0, \quad \text { and } \quad f^{\prime \prime}\left(x_{0}\right) \leqslant 0 . \tag{10.1}
\end{equation*}
$$

At a negative interior minimum it satisfies

$$
\begin{equation*}
f\left(x_{0}\right)<0, \quad f^{\prime}\left(x_{0}\right)=0, \quad \text { and } \quad f^{\prime \prime}\left(x_{0}\right) \geqslant 0 . \tag{10.2}
\end{equation*}
$$

Our aim here is to show how (10.1) and (10.2) are used to obtain information about the solutions of differential equations. We adopt the convention that $a<b$ and that y is continuous on the closed interval $a \leqslant x \leqslant b$ or $a \leqslant x<\infty$, as the case may be, which is implicitly specified in the statement of the problem. The function y is also twice differentiable on the interior.

Example 10.2. Show that the only solution of the boundary value problem

$$
y^{\prime \prime}+e^{x} y^{\prime}=\left(x^{2}+1\right) y, \quad y(a)=y(b)=0
$$

is $y=0$.
SOLUTION. If y is not identically zero there must be a positive maximum or a negative minimum at some point c where $a<c<b$. At this point $y^{\prime}(c)=0$ and the differential equation becomes

$$
y^{\prime \prime}(c)=\left(c^{2}+1\right) y(c) .
$$

So, either condition (10.1) or (10.2) leads to a contradiction.
Equations (10.1) and (10.2) constitute the maximum principle in its broadest sense. In a narrower sense, the term "maximum principle" is used to describe an estimate for y on $a<x<b$ from knowledge of the boundary values $y(a)$ and $y(b)$.

Example 10.3. Suppose that y solves the differential equation

$$
(\cos x)^{2} y^{\prime \prime}+x^{2}(1-x) y^{\prime}=2 y
$$

on the interval $a \leqslant x \leqslant b$ and $|y(a)|,|y(b)| \leqslant m$, where m is a positive constant. Show that $|y(x)|<m$ for $a<x<b$.

SOLUTION. If otherwise, either y has a positive interior maximum or a negative interior minimum. Either condition leads to a contradiction as in Example 10.2.

It is a consequence of Rolle's theorem that if $y^{\prime}>0$ on an interval then y is strictly increasing. The relation $y^{\prime}>0$ is an example of a differential inequality. Differential inequalities form a major subfield of the modern theory of differential equations.
Example 10.4. Show that a function y satisfying

$$
e^{x} y^{\prime \prime}+y^{\prime} \sin x-(1+x) y \geqslant 0, \quad \text { for } \quad x>0
$$

and $y(0) \geqslant 0, y^{\prime}(0)>0$ must be strictly increasing.
SOLUTION. If otherwise, there are points x_{1} and x_{2} such that $0<x_{1}<x_{2}$ and $y\left(x_{1}\right) \geqslant y\left(x_{2}\right)$. It is obvious from a sketch that y attains a positive maximum at an interior point c of the interval $0 \leqslant x \leqslant x_{2}$. (An analytic proof can be given by use of Theorem 10.1.) At the maximum we have $y^{\prime}(c)=0$, and the differential inequality becomes

$$
e^{c} y^{\prime \prime}(c)-(1+c) y(c) \geqslant 0 .
$$

Then, (10.1) leads to a contradiction.
A zero of a function y is a point where $y(x)=0$. In general, a solution of a second-order linear differential equation cannot have zeros too close together unless it is identically zero.
Example 10.5. Let y satisfy

$$
y^{\prime \prime}+e^{-x} y^{\prime}=y \sin x, \quad x>0
$$

and $y(0)=y(b)=0$ where $b>0$. Show that $b>\pi$ unless y is identically zero.
Solution. Suppose that $b \leqslant \pi$ and that y is not identically zero for $0<x<b$. Then there is a positive maximum or negative minimum at an interior point c of this interval. At c the differential equation becomes $y^{\prime \prime}(c)=y(c) \sin c$ and either condition (10.1) or (10.2) lead to a contradiction. Hence $y=0$ on the interval $0<x<b$. This gives $y(b)=y^{\prime}(b)=0$ and then $y=0$ by the uniqueness theorem for second-order initial value problems.

Exercises.

1. Show that no nontrivial solution of

$$
w^{\prime \prime}+\lambda q(x) w=0, \quad w(a)=0=w(b)
$$

exists if $q(x)>0$ and $\lambda<0$.
2. Consider

$$
e^{\cos x} w^{\prime \prime}-x^{2} w+x^{3}=0, \quad \text { for all } x,
$$

where $w(0)=0$. Show that $y=w-x$ have a positive maximum or negative minimum at any value $x=c$. Show also that the sign of $w^{\prime \prime}$ is the same as the sign of $w-x$.
3. Show that the solution of the DE $(\cosh x) y^{\prime \prime}+(\cos x) y^{\prime}=\left(1+x^{2}\right) y$ for $a<x<b$ with $y(a)=$ $1=y(b)$ satisfies $0<y(x)<1$ for $a<x<b$.

