18.034 Honors Differential Equations Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

LECTURE 8. UNIQUENESS AND THE WRONSKIAN.

Differential inequality and uniqueness. We prove the uniqueness theorem for linear secondorder differential equations with variable coefficients.

Theorem 8.1 (Uniqueness Theorem). If p(t) and q(t) are continuous on an open interval I containing t_0 , then at most one solution of

(8.1)
$$y'' + p(t)y' + q(t)y = f(t)$$

on I satisfies the initial conditions $y(t_0) = y_0$ and $y'(t_0) = y_1$.

Proof. Let y_1 and y_2 be any two solutions of (8.1) which satisfy the initial conditions. Let $v = y_1 - y_2$. Then,

(8.2)
$$v'' + p(t)v' + q(t)v = 0$$
 on I and $v(t_0) = v'(t_0) = 0$.

We shall show that v(t) = 0 for all $t \in I$.

We consider the function $E(t) = v^2 + (v'(t))^2$. It is readily seen that $E(t) \ge 0$ and $E(t_0) = 0$. By differentiating, we obtain

$$E'(t) = 2v(t)v'(t) + 2v'(t)v''(t) = 2v'(t)(v(t) + v''(t))$$

= 2v'(t)(v(t) - p(t)v'(t) - q(t)v(t))
= -2p(t)(v'(t))^2 + 2(1 - q(t))v(t)v'(t).

The second equality uses (8.2). By the Cauchy-Schwartz inequality, then

$$(1 - q(t))v(t)v'(t) \leq (1 + |q(t)|)(v^2(t) + (v'(t))^2),$$

whence

$$E'(t) \leq (1+|q(t)|)v^2(t) + (1+|q(t)|+2|p(t)|)(v'(t))^2 \leq KE(t),$$

where $K \ge 1 + \max_{t \in I}(|q(t)| + 2|p(t)|)$ is a constant.

We claim that E(t) = 0 for all $t \in I$. Suppose, on the contrary, that $E(t_1) > 0$ at some point t_1 . Assume $t_1 > t_0$. The other case can be treated similarly. We compute

$$\frac{d}{dt}(e^{-Kt}E(t)) = e^{-Kt}(E'(t) - KE(t)) \leqslant 0.$$

Hence, $e^{-Kt}E(t)$ is a decreasing function of *t*. In particular,

$$e^{-Kt_1}E(t_1) \leqslant e^{-Kt_0}E(t_0) = 0$$

However, $E(t_1) \leq 0$, which leads to a contradiction. This completes the proof.

The above method applies to a broad class of linear and nonlinear differential equations. It applies when y is a complex solution and when p(t) and q(t) are merely bounded.

The Wronskian. The *Wronskian*^{*} of two differentiable functions u and v is, by definition,

(8.3)
$$W(u,v;t) = \begin{vmatrix} u(t) & v(t) \\ u'(t) & v'(t) \end{vmatrix} = u(t)v'(t) - u'(t)v(t).$$

We write W(t) or W(u, v) to emphasize dependence on t or on the functions.

In the study of a linear differential equation

(8.4)
$$y'' + p(t)y' + q(t)y = 0,$$

where p, q are continuous, the Wronskian can be computed easily by the following result.

Theorem 8.2. (Abel's identity[†]) Let u and v be solutions of (8.4), then the Wronskian W(u, v; t) satisfies the first-order differential equation

$$W' + p(t)W = 0.$$

Consequently,

$$W(u,v;t) = W(u,v,t_0) \exp\left(-\int_{t_0}^t p(s)ds\right).$$

Proof. By differentiating W'(u, v) = uv'' - u''v. The assertion follows upon substituting u'' and v'' by (8.4) and by cancellation.

Corollary 8.3. The Wronskian of two solutions of (8.4) is either identically positive, identically negative or identically zero.

The Wronskian and linear dependence. A collection of functions u_1, \dots, u_n is called *linearly independent* on the interval *I* if

 $c_1u_1(t) + \dots + c_nu_n(t) = 0$ on $t \in I$ implies $c_1 = c_2 = \dots = c_n = 0$.

It is called *linearly dependent* otherwise. If *u* and *v* are linearly dependent, then *u* and *v* are proportional.

The Wronskian gives a simple criterion for linear dependence.

Lemma 8.4. Let u and v be differentiable functions on an interval I.

- (i) If u and v are linearly dependent, then W(u, v; t) = 0 for all $t \in I$.
- (ii) If W(u, v; t) = 0 on I and $v \neq 0$, then u and v are linearly dependent.

The condition W(u, v) = 0 on an interval, in general, does not ensure that u and v are linearly dependent. For example, $W(t^3, |t|^3) \equiv 0$ but t^3 and $|t|^3$ are linearly independent on any open interval containing zero.

If u and v are solutions of a linear second-order differential equation, then a stronger result than (ii) in the above lemma holds true.

Theorem 8.5. Let u and v be solutions of (8.4), where p, q are continuous functions on an interval I.

If $W(u, v; t_0) = 0$ at some point $t_0 \in I$, then u and v are linearly dependent and hence W(u, v; t) = 0for all $t \in I$. If u and v are linearly independent then W(u, v; t) = 0 at no point of I.

Proof. If $W(u, v; t_0) = 0$ then two vectors $(u(t_0), u'(t_0) \text{ and } (v(t_0), v'(t_0))$ are linearly dependent. Hence, one can choose c_1 and c_2 , both cannot be zero, such that

$$c_1 u(t_0) + c_2 v(t_0) = 0,$$

 $c_1 u'(t_0) + c_2 v'(t_0) = 0.$

^{*}It is named after the Polish mathematician Józef Hoene-Wroński. He introduced determinants of this form in 1811. [†]Discovered by the Norvegian mathematician Hentik Abel in 1826

We consider the function $y(t) = c_1u(t) + c_2v(t)$. Since y is a linear combination of u and v, it solves (8.4). Moreover, it satisfies the initial condition $y(t_0) = y'(t_0) = 0$. By the uniqueness theorem, then, y(t) = 0 for all $t \in I$. That means, u and v are proportional on I, and it proves the first assertion. The second assertion then is an obvious consequence of the first. \Box

The fact that (8.4) has no singular points is vital in the above theorem. For example, t^2 and t^3 are linearly independent solutions of the differential equation

$$t^2y'' - 4ty' + 6y = 0.$$

But, $W(t^2, t^3) = t^4$ vanishes at t = 0.

The Wronskian has an interesting application of finding a basis of solutions and a particular solution of a linear second-order differential equation.

Theorem 8.6. Let *u* be a non-vanishing solution of the differential equation (8.4).

(i) The second solution v of (8.4), independent of u, is given by

(8.6)
$$v(t) = cu(t) \int \frac{e^{-P(t)}}{u^2(t)}, \qquad c \neq 0$$

where $P(t) = \int p(t)dt$.

(ii) a particular solution of the inhomogeneous equation

$$y'' + p(t)y' + q(t)y = f(t)$$

is given by w = uz, where

$$(e^P u^2 z')' = u e^P f, \qquad P(t) = \int p(t) dt.$$

Proof. (i) We compute

$$\left(\frac{v}{u}\right)' = \frac{uv' - u'v}{u^2} = \frac{W(u,v)}{u^2}.$$

The assertion then follows upon integration and the use of the Abel's identity.

(ii) Substituting w = uz into the equation, we obtain

$$uz'' + (2u' + pu)z' = f.$$

This is a first-order linear differential equation for z'. It is straightforward to compute the integrating factor ue^{P} . Multiplying the above equation by the factor,

$$z''u^2e^P + e^P(2uu' + pu^2)z' = ue^Pf.$$

This proves the assertion.

Example 8.7. The trial solution $y = t^m$ shows that the equation

(8.7)
$$t^2y'' - 13ty' + 49y = 0, \qquad t > 0$$

has a solution $u = t^7$. To find a second solution, linearly independent of u, we compute

$$p(t) = \frac{-13}{t}$$
, $P(t) = -13 \log t$, $e^{-P(t)} = t^{13}$.

The above theorem then gives

$$v = t^7 \int t^{13} t^{-14} dt = t^7 \log t.$$

The general solution to (8.7) is therefore

$$t^7(c_1 + c_2\log t),$$

where c_1, c_2 are arbitrary constants.

Next, we consider the inhomogeneous equation

$$t^{2}y'' - 13ty' + 49y = t^{2}f(t), \qquad t > 0,$$

or

$$y'' - \frac{13}{t}y' + \frac{49}{t^2}y = f(t), \qquad t > 0.$$

Take $u = t^7$, and by the above theorem the particular solution is w = uz, where

$$z' = \frac{1}{t} \int \frac{f(t)}{t^6} dt.$$

For example, if $f(t) = t^m$, then

$$w(t) = \begin{cases} \frac{t^{m+2}}{(m-5)^2}, & m \neq 5\\ \frac{1}{2}t^7(\log t)^2, & m = 5. \end{cases}$$