MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

LECTURE 4. SEPARABLE EQUATIONS

Separable equations. Separable equations are differential equations of the form

$$
\begin{equation*}
\frac{d y}{d x}=\frac{f(x)}{g(y)} \tag{4.1}
\end{equation*}
$$

For example, $x+y y^{\prime}=0$ and $y^{\prime}=y^{2}-1$. A separable equation (4.1) can be written in the differential form as

$$
\begin{equation*}
f(x) d x=g(y) d y \tag{4.2}
\end{equation*}
$$

Then, it can be solved formally by integrating both sides of (4.2).
We state and prove the rigorous theory of local solutions for (4.2) (and hence (4.1)).
Theorem 4.1. Let $f(x)$ and $g(x)$ be continuous in the rectangle $R=\{(x, y): a<x<b, c<y<d\}$. In addition, if f and g do not vanish simultaneously at any point of R, then (4.2) has one and only one solution through each point $\left(x_{0}, y_{0}\right) \in R$. The solution is given by

$$
\begin{equation*}
\int_{x_{0}}^{x} f(x) d x=\int_{y_{0}}^{y} g(y) d y \tag{4.3}
\end{equation*}
$$

It is essential that f and g do not vanish simultaneously. For example, $x d x=-y d y$ has no solution through the origin.
Proof. Note that $f(x) \neq 0$ for $a<x<b$ or $g(y) \neq 0$ for $c<y<d$. Without loss of generality, we assume $g(y)>0$ for $c<y<d$.

Let

$$
F(x)=\int_{x_{0}}^{x} f(x) d x, \quad G(x)=\int_{y_{0}}^{y} g(y) d y
$$

so that (4.3) becomes

$$
\begin{equation*}
F(x)=G(x) . \tag{4.4}
\end{equation*}
$$

Since $G^{\prime}(y)=g(y)>0$ in R, by the inverse function theorem, G^{-1} exists and (4.4) can be written as $y=G^{-1}(F(x))$. That means, $\frac{d y}{d x}$ exists. Then, by differentiating (4.4), we get

$$
F^{\prime}(x)=G^{\prime}(x) \frac{d y}{d x}, \quad \text { or } \quad f(x)=g(y) \frac{d y}{d x}
$$

This implies (4.2). Moreover, (4.3) gives the initial condition that $y=y_{0}$ when $x=x_{0}$.
To prove the uniqueness, let y be one solution of (4.2) and z be another solution with the same initial condition. Under the hypothesis, the equation

$$
\frac{d z}{d x}=\frac{f(x)}{g(z)}
$$

implies that $d z / d x$ exists for any $(x, z) \in R$. Let

$$
u=G(y), \quad v=G(z)
$$

Then,

$$
\frac{d u}{d x}=G^{\prime}(y) \frac{d y}{d x}=g(y) \frac{d y}{d x}=f(x)
$$

Similarly, $\frac{d z}{d x}=f(x)$. Since u and v have the same derivative, they differ by a constant. On the other hand, the initial conditions for u and v at x_{0} agree. Therefore, $u=v$ everywhere in R. This completes the proof.
Example 4.2. Consider the initial value problem

$$
\begin{equation*}
\frac{d y}{d x}=1+y^{2}, \quad y(0)=1 . \tag{4.5}
\end{equation*}
$$

Separating the variables, we write the differential equation as

$$
\frac{d y}{1+y^{2}}=d x \text {. }
$$

Since the constant function never vanishes, upon integration and evaluation, we obtain

$$
\tan ^{-1} y=x+c, \quad \tan ^{-1} 1=c .
$$

Therefore, the (unique) solution of (4.5) is $y=\tan (x+\pi / 4)$. The same result is obtained by integrating between corresponding limits

$$
\int_{1}^{y} \frac{d y}{1+y^{2}}=\int_{0}^{x} d x .
$$

Orthogonal trajectories. If two families of curves are such that every curve of one family intersects the curves of the other family at a right angle, then we say that the two families are orthogonal trajectories of each other. For example, the coordinate lines:

$$
x=c_{1}, \quad y=c_{2}
$$

in a Cartesian coordinate system form a set of orthogonal trajectories. Another example is the circles and radial lines

$$
r=c_{1}, \quad \theta=c_{2}
$$

in a polar coordinate system.
Suppose a curve in the (x, y)-plane is such that the tangent at a point (x, y) on it makes an angle ϕ with the x-axis. The orthogonal trajectory through the same point (x, y) then makes an angle $\phi+\pi / 2$ with the x-axis. Since

$$
\tan (\phi+\pi / 2)=-\cot \phi=-\frac{1}{\tan \phi}
$$

and since the slope of the curve is $\frac{d y}{d x}=\tan \phi$, we should replace $\frac{d x}{d y}$ by $-\frac{d x}{d y}$ in the differential equation for the original family to get the differential equation for the orthogonal trajectories.
Example 4.3. We consider the family of circles

$$
\begin{equation*}
x^{2}+y^{2}=c x \tag{4.6}
\end{equation*}
$$

tangent to the y axis.
By differentiating (4.6) and by eliminating c, we obtain a differential equation

$$
x^{2}+y^{2}=2 x+2 x y \frac{d y}{d x}, \quad \text { or } \quad y^{2}-x^{2}=2 x y \frac{d y}{d x}
$$

that the family of curves (4.6) satisfies. Replace $d y / d x$ by $-d x / d y$ we get the equation of the orthogonal trajectories

$$
y^{2}-x^{2}=-2 x y \frac{d x}{d y} .
$$

We write it in differential form as

$$
2 x y d x-x^{2} d y+y^{2} d y=0 .
$$

Multiplying by $1 / y^{2}$ then gives*

$$
d\left(\frac{x^{2}}{y}\right)+d y=0
$$

and hence, $\frac{x^{2}}{y}+y=c$. We arrange it into

$$
x^{2}+y^{2}=c y,
$$

which represents a family of circles tangent to the x-axis.
Although the analytical steps require $x \neq 0, y \neq 0$, and $y^{2} \neq x^{2}$, the final result is valid without these restrictions.

The quantity c defined by $x^{2}+y^{2}=c x$ is constant on the original curves of the family, but not on the orthogonal trajectories. That is why c must be eliminated in the first step.
Exercise. Show that the orthogonal trajectories of the family of geometrically similar, coaxial ellipses

$$
x^{2}+m y^{2}=c, \quad m>0
$$

are given by $y= \pm|x|^{m}$.
Exercise. Show that the solution curves of any separable equation $y^{\prime}=f(x) g(y)$ have as orthogonal trajectories the solution curves of the separable equation $y^{\prime}=-1 / f(x) g(y)$.

[^0]
[^0]: ${ }^{*}$ This procedure makes the equation exact and the solution is defined implicitly. The factor $1 / y^{2}$ is called a integrating factor. We will study exact differential equation more systematically later.

