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LECTURE 3. FIRST-ORDER LINEAR EQUATIONS 

First-order linear differential equations. We will give a systematic method of solving first-order 
differential equations (of normal form) 

(3.1) y� + p(x)y = f(x) 

on a given interval I , where p, f are continuous functions. 
First, the homogeneous equation 

(3.2) y� + p(x)y = 0 

is solved by quadrature. Let P (x) = p(x)dx be an indefinite integral of p(x). Then, 

d 
(e P (x)y) = e P (x)y� + p(x)e P (x)y = e P (x)(y� + p(x)y) = 0 

dx

if and only if y solves (3.2), since eP (x) = 0. 

Theorem 3.1. Let p(x) be continuous on an interval I and P (x) = p(x)dx be an anti-derivative of p(x). 
Then, R 

φ(x) = ce−P (x) = ce− p(x)dx 

is a solution of (3.2) for any constant c. Conversely, all solutions of (3.2) are of this form. 

Exercise. Show that a solution y(x) of (3.2), where p(x) is continuous, is: either y(x) = 0 for all x 
or y(x) = 0 � for all x. 

Next, we treat the inhomogeneous equation 

(3.3) y� + p(x)y = f(x) 

by variation of parameters. Let P (x) = p(x)dx as before. Then, 

d 
(e P (x)y) = e P (x)(y� + p(x)y) = e P (x)f(x). 

dx
x 

Hence, ye P (x) = y0 + e P (s)f(s)ds for some y0 and for some x0. 
x0 

Theorem 3.2. Let p(x) be as in Theorem 3.1 and let f(x) be continuous on an interval x0 ∈ I . Then, the 
general solution of (3.3) is given by 

x 

y(x) = y0e
−P (x) + e−P (x) e P (s)f(s)ds. 

x0 

Moreover, y(x0) = y0 if and only if P (x) = x
x 
0 
p(s)ds. 

Example 3.3. Consider the differential equation 

(3.4) y� + y = x + 3. 

By trying y(x) = ax + b one easily finds a solution y = x +2 of (3.4). If y = φ(x) is another solution 
of (3.4), then z = y − (x + 2) must satisfy the corresponding homogeneous equation z� + z = 0. By 
Theorem 3.2, then, z = ce−x. Therefor, the general solution of (3.4) is 

y = ce−x + x + 2. 
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Exercise. (Bernoulli equations) 1. If p and q are continuous functions of x and n =� 1 is constant, 
show that the Bernoulli equation 

y� + p(x)y = q(x)y n , y > 0 
mcan be reduced to a linear equation upon substitution y = u for a suitable constant m. The 

condition y > 0 ensures that the function u = y1/m is meaningful. When n = 1 the original 
equation is already linear. 

2. Solve the differential equation y� + y = xy3 , y > 0. 

The logarithmic spiral. Suppose a curve r = f(θ) in polar coordinates cuts the radius at a con
stant angle, say ψ, as shown in the figure below. 

Figure 3.1. The logarithmic spiral. 

The game is to find the equation of this curve. If ψ = 0 the curve is a ray extending from the 
origin to ∞ and it cannot be represented in the form r = f(θ). If ψ = π/2 or −π/2 the curve is a 
circle centered at he origin. If 

(3.5) −π/2 < ψ < π/2, ψ = 0� , 

1
we write tan ψ = . The differential equation is 

k

rdθ


tan ψ = . 
dr 

(See Figure 3.2.) 
1

Using tan ψ = we obatin 
k


rdθ 1 dr

(3.6) = , = kr, 

dr k dθ 

and therefore r = cekθ . 
A curve of this kind is called a logarithmic spiral. The steps in the discussion above are reversible, 

and hence a curve r = f(θ) cuts the radius at a constant angle ψ satisfying (3.5) if, and only if, it 
is a logarithmic spiral. Since k is arbitrary, this gives a geometric interpretation of all processes 
obeying the exponential law of growth. 

A logarithmic spiral looks like a snail shell (Figure 3.1), and this is not a coincidence. A snail 
shell has the characteristic that it grows only at one end, and the part of the shell already laid 
down does not change. The growth is specified by its rate in two perpendicular directions - radial 
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Figure 3.2. 



and transverse. Let us suppose that both rates are proportional to the size at time t. The precise 
meaning of ”size” will not matter, and we use the weight W as a quantity that is easily measured. 
If arc length in the radial direction is s1 and in the transverse direction is s2, then 

(3.7) 
ds1 = k1W and 

ds2 = k2W, 
dt dt 

where k1, k2 are constants. The arc length in polar coordinates thus satisfies 

ds2 = dr2 + (rdθ)2 . 

Setting dθ = 0 we get ds1 = dr and setting dr = 0 we get ds2 = rdθ. Dividing the second equation 
in (3.7) by the first, we arrive at 

rdθ k2 = . 
dr k1 

This is the same equation as in (3.6) with k = k1/k2. 
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