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LECTURE 0. TERMINOLOGY AND IMPLICIT SOLUTIONS 

A differential equation (DE) is an equation between specified derivatives of an unknown function, 
its value, and known quantities and functions. Many physical laws are formulated as differential 
equations. 

Ordinary differential equations are differential equations whose unknowns are functions of a 
single variable. They commonly arise in dynamical systems and electrical engineering. Partial 
differential equations are differential equations whose unknown depend two or more independent 
variables. In this course, we focus only on ordinary differential equations. 

The order of a differential equation is the largest integer n, for which an n-th derivative occurs 
in the equation. 

NOTATION. We typically use t or x for independent variables and y or u, v for unknowns, except 
for the plane systems of (parametric curves), for which we use t as the independent variable and 
x and y for unknowns. We use the prime to denote the differentiation. For instance, when t is the 

dy d2y
independent variable and y is the unknown, y� means and y�� means . 

dt dt2 

In this note, we use t for the independent variable and y for the unknown. 

The most general form of a differential equation of order n is 

F (t, y, y�, , y(n)) = 0.· · · 
A differential equation of order n is said of normal form if it takes the form 

y(n) = f(t, y, y�, , y(n−1)).· · · 
Differential equations are usually considered on an open interval I = {t : a < t < b}, where 

−∞ � a < b � ∞. A solution of a differential equation on I s a function φ(t) which, upon 
substitution y = φ(t), y� = φ�(t), . . . , satisfies the differential equation for every t ∈ I . 

A differential equation is said linear if it is linear in the unknown and its derivatives. A linear 
differential equation of order n takes the form 

p0(t)y(n) + p1(t)y(n−1) + + pn−1(t)y� + pn(t)y = f(t),· · · 
where pj (t), f(t) are continuous functions on an interval. It is said homogeneous if f(t) = 0. A 
differential equation is said nonlinear if it is not linear. Examples of nonlinear differential equations 
are (y�)2 = t + y and yy� = t. 

Many problems lead to two or more differential equations in two or more unknowns. In other 
words, they lead to a system of differential equations. For example, 

x� = f(t, x, y), y� = g(t, x, y). 

Initial value problems. Differential equations commonly encountered in applications have infin
itely many solutions. For example, y� = f(t, y) has a family of solutions y = φ(t; c) depending on 
one parameter c and y�� = f(t, y, y�) has a family of solutions y = φ(t; c1, c2) depending on two 
parameters c1 and c2. These parameters are like constants of integration, For example, we solve 
the differential equation y�� = 0 to obtain the family of solutions 

y = c1t + c2, 

1 



� 

depending on two constants of integration, c1 and c2. 
A simplest way to determine the parameters is to specify the value of y an its derivatives at a 

single point t0. For example, y� = f(t, y) with y(t0) = y0, and y�� = f(t, y, y�) with y(t0) = y0, 
y�(t0) = y1. These equations are called initial conditions and the values yj are called initial values. 
The reason for the term “initial value” is that in many problems t denotes the time and t0 is the 
time at which the process starts. 

An Initial value problem consists in finding the solution (or solutions) of the differential equation 

y(n) = f(t, y, y�, , y(n−1)) for t � t0· · · 
satisfying 

y(t0) = y0, y�(t0) = y1, . . . y(n−1)(t0) = yn−1. 

Implicit solutions. Let us consider the differential equation 

(0.1) x + yy� = 0, 

where � = d/dx. Since 
d 

(x 2 + y 2) = 2(x + yy�)
dx

the function y = φ(x) is a solution of (0.1) if and only if x2 + y2 = c, where c is a constant. In this 
sense the equation 

(0.2) x 2 + y 2 = c 

defines solutions of (0.1) implicitly (with a function of x and y). 
For c < 0 the locus of x2 +y2 = c is empty, and it gives no solution. For c = 0 the locus consists of 

the single point (x, y) = (0, 0). But, it does not give a solution since it does not give a differentiable 
function. For c > 0 the solution curve is the circle of radius 

√
c centered at the origin. 

Solving (0.2) for y, we obtain the (explicit) solution 

y = ± c − x2 , 

which corresponds to the upper and the lower semicircles. These functions are defined for −
√
c � 

x � 
√
c, but they are solutions of (0.1) only for −

√
c < x < 

√
c. For, y� = �√

c

x 

− x2 
becomes 

infinite at x = ±
√
c. 

The formulation (0.1) breaks down at x = ±
√
c and y = 0 since the points correspond to dy/dx = 

∞. Nevertheless, the geometric interpretation remains meaningful. In the normal form of (0.1), 
dy x

(0.3) 
dx 

= − 
y
, 

y� means the slope of the solution curve and the right sids gives the value of the slope at the point 
(x, y). At x = ±

√
c and y = 0 the slope of the solution curve can be understood as being vertical. 

To deal with this matter, note that a curve in the (x, y)-plane can be described not only by 
y = φ(x) but also by x = ψ(y). The equation (0.3) implies that y = φ(x), where φ is differentiable 
and no solution curve of the equation can contain a point where y = 0, which would imply 
dy/dx = ∞. But, in the equation 

dx y 
,

dy 
= −

x 
y = 0, which in turn implies dx/dy = ψ�(y) = 0, is permissible. 

Nature has no recognizance of coordinate systems, which merely provide a framework for the 
mathematical description of an underlying reality. If a problem seems intractable when we insist 
on a solution y = φ(x), but easy when we allow x = ψ(y), it could mean that we have made an 
inappropriate choice of independent and dependent variables in the formulation. 
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