MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Practice Midterm \#3

Notation. ${ }^{\prime}=d / d t$.

1. (a) If $f \in E$ and $F(s)=\mathcal{L}[f(t)]$, show that $\lim _{s \rightarrow \infty} F(s)=0$.
(b) Find the inverse Laplace transform of $F(s)=\log \left(\frac{s+1}{s-1}\right)$.
2. (a) Sketch the graph of $f(t)=(1 / 5)(h(t-5)(t-5)-h(t-10)(t-10))$, where $h(t)$ is the unit step function or the Heaviside function.
(b) Find the solution of the initial value problem

$$
y^{\prime \prime}+4 y=f(t), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Sketch the graph of the solution.
(c) Compute the left and the right limits of $y^{\prime \prime}(t)$ at $t=5$ and $t=10$.
3. Consider two vectors $\vec{y}_{1}(t)=(t, 1)$ and $\vec{y}_{2}(t)=\left(t^{2}, 2 t\right)$.
(a) In which intervals are \vec{y}_{1} and \vec{y}_{2} are linearly independent?
(b) Find a system of differential equations satisfied by \vec{y}_{1} and \vec{y}_{2}.
4. Find the general solution of

$$
\binom{x}{y}^{\prime}=\left(\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right)\binom{x}{y}
$$

5. Let

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

(a) Show that $A^{2}=-I$.
(b) Show that

$$
e^{A t}=\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right)
$$

(c) Find the general solution of

$$
\binom{x}{y}^{\prime}=A\binom{x}{y} .
$$

(d) Sketch solutions in the (x, y)-plane and discuss their behavior.

