MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Practice Midterm \#2

Notation. ${ }^{\prime}=d / d t$.

1. (a) Find numbers a and b so that the differential equation $t^{2} y^{\prime \prime}+a t y^{\prime}+b y=0$ has solutions t^{2} and t^{3} on the interval $t \in(0, \infty)$.
(b) Find a differential equation that has solutions $(1-t)^{2}$ and $(1-t)^{3}$ on the interval $t \in(-\infty, 1)$.
(c) Find a differential equation that has solutions t and e^{t}.
2. Using variation of parameters find a solution of $y^{\prime \prime}-\left(2 / t^{2}\right) y=t, t \neq 0$.
3. Find a general solution of $\left(D^{2}-1\right)^{4}\left(D^{3}+1\right)^{5} y=3 e^{t}$.
4. Show that the function $u=e^{\int z}$ is a solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ if and only if z is a solution of the Riccati equation $y^{\prime}+p(t) y+q(t)=-y^{2}$.
5. (a) State the existence and uniqueness theorem for the initial value problem

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0} .
$$

(b) Show that $f(t, y)=-y+1$ satisfies the Lipschitz condition for all t and y.
(c) Using Picard's iteration method obtain the iterate $y_{1}(t)$ and $y_{2}(t)$ of

$$
y^{\prime}=-y+1, \quad y(0)=1 .
$$

(d) Find the exact solution of the initial value problem in part (c).

