18.034 Honors Differential Equations Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Practice Midterm #2

Notation. ' = d/dt.

1. (a) Find numbers a and b so that the differential equation $t^2y'' + aty' + by = 0$ has solutions t^2 and t^3 on the interval $t \in (0, \infty)$.

(b) Find a differential equation that has solutions $(1-t)^2$ and $(1-t)^3$ on the interval $t \in (-\infty, 1)$. (c) Find a differential equation that has solutions t and e^t .

2. Using *variation of parameters* find a solution of $y'' - (2/t^2)y = t$, $t \neq 0$.

3. Find a general solution of $(D^2 - 1)^4 (D^3 + 1)^5 y = 3e^t$.

4. Show that the function $u = e^{\int z}$ is a solution of y'' + p(t)y' + q(t)y = 0 if and only if z is a solution of the Riccati equation $y' + p(t)y + q(t) = -y^2$.

5. (a) State the existence and uniqueness theorem for the initial value problem

$$y' = f(t, y), \qquad y(t_0) = y_0,$$

(b) Show that f(t, y) = -y + 1 satisfies the Lipschitz condition for all t and y.

(c) Using Picard's iteration method obtain the iterate $y_1(t)$ and $y_2(t)$ of

$$y' = -y + 1, \qquad y(0) = 1.$$

(d) Find the exact solution of the initial value problem in part (c).