MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Practice Midterm \#1

1. Solve the initial value problem

$$
y^{\prime \prime}-3 y^{2}=0, \quad y(0)=2, y^{\prime}(0)=4 .
$$

Determine the interval in which the solution exists.
2. Consider the differential equation $y^{\prime}=(1-y)(y-2)^{3}$.
(a) Sketch the graph of $f(y)=(1-y)(y-2)^{3}$.
(b) Determine the critical points (stationary solutions).
(c) Discuss the stability of critical points in part (b).
3. Determine the values of a, if any, for which all solutions of the differential equation

$$
y^{\prime \prime}-(2 a-1) y^{\prime}+a(a-1) y=0
$$

tend to zero as $t \rightarrow \infty$. Also, determine the values of a, if any, for which all (nonzero) solutions become unbounded as $t \rightarrow \infty$.
4. Consider the undamped forced vibration system

$$
y^{\prime \prime}+\omega^{2} y=\sin 2 t, \quad u(0)=0, \quad u^{\prime}(0)=0
$$

(a) Find the solution for $\omega \neq 2$.
(b) Find the solution for $\omega=2$.
5. (a) Find the value m for which $y=t^{m}$ is a solution of the differential equation

$$
t^{2} y^{\prime \prime}-13 t y^{\prime}+49 y=0, \quad t>0
$$

(b) Find a second solution of the differential equation in part (a).
6. Show that every solution of $u^{\prime \prime}+\left(1+e^{t}\right) u=0$ vanishes infinitely often on $0<t<\infty$.

