MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Midterm \#3

Name:

1. (a) (15 points) If $f^{\prime} \in E$ and f is continuous, show that $\lim _{s \rightarrow \infty} s F(s)=f(0)$.
(b) (5 points) Can $F(s)=1$ be the Laplace transform of a function $f \in E$?

18.034 Midterm \#3

Name:

2. (a) (10 points) Show that the solution of the initial value problem

$$
y^{\prime \prime}+2 y^{\prime}+2 y=f(t), \quad y(0)=y^{\prime}(0)=0
$$

is

$$
y(t)=\int_{0}^{t} e^{-\left(t-t_{1}\right)} f\left(t_{1}\right) \sin \left(t-t_{1}\right) d t_{1} .
$$

(b) (10 points) Show that if $f(t)=\delta(t-\pi)$ then the solution of the initial value problem in part (a) is $y(t)=h(t-\pi) e^{-(t-\pi)} \sin (t-\pi)$.

18.034 Midterm \#3

 Name:3. Consider two vectors $\vec{y}_{1}(t)=\left(t^{2}, 2 t\right)$ and $\vec{y}_{2}(t)=\left(e^{t}, e^{t}\right)$.
(a) (10 points) In which intervals are \vec{y}_{1} and \vec{y}_{2} linearly independent?
(b) (10 points) Find a system of differential equations satisfied by \vec{y}_{1} and \vec{y}_{2}.

18.034 Midterm \#3

Name:
4. Let $A=\left(\begin{array}{cc}-1 & -1 \\ 2 & -1\end{array}\right)$.
(a) (10 points) Find eigenvalues and eigenvectors of A.
(b) (10 points) Find the general solution of

$$
\binom{x}{y}^{\prime}=A\binom{x}{y}+\binom{2}{1} e^{-t} .
$$

18.034 Midterm \#3

Name:
5. Let $A=\left(\begin{array}{ll}1 & -4 \\ 4 & -7\end{array}\right)$.
(a) (8 points) Find eigenvalues and eigenvectors of A.
(b) (7 points) Find the solution of the initial value problem

$$
\binom{x}{y}^{\prime}=A\binom{x}{y}, \quad\binom{x(0)}{y(0)}=\binom{3}{2} .
$$

18.034 Midterm \#3

Name:
(c) (5 points) Describe how the solution behaves as $t \rightarrow \infty$.
(d) (extra credits) Compute $e^{A t}$.

