18.034 Honors Differential Equations Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Name:

1. (20 points) Solve the initial value problem

$$y'y'' - t = 0,$$
 $y(1) = 2,$ $y'(1) = 1.$

Name:

2. Consider the differential equation $y' = y(5-y)(y-4)^2$.

(a) (7 points) Determine the critical points (stationary solutions).

(b) (5 points) Sketch the graph of $f(y) = y(5-y)(y-4)^2$.

(c) (8 points) Discuss the stability of critical points in part (b).

Name:

3. (20 points) Determine the values of *a*, if any, for which all solutions of the differential equation

$$y'' - (3-a)y' - 2(a-1)y = 0$$

tend to zero as $t \to \infty$. Here, $' = \frac{d}{dt}$.

Name:

4. Consider the undamped forced vibration system

$$y'' + y = 3\cos\omega t$$
, $y(0) = 0$, $y'(0) = 0$.

(a) (10 points) Find the solution for $\omega \neq 1$.

(b) (5 points) Find the solution for $\omega = 1$.

(c) (5 points) Discuss the behavior of solutions in part (a) and part (b).

Name:

5. (a) (5 points) State the Sturm Comparison Theorem.

(b) (15 points) Show that no nontrivial solution of $y'' + (1 - t^2)y = 0$ vanishes infinitely often on $0 < t < \infty$.