MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Midterm \#1

Name:

1. (20 points) Solve the initial value problem

$$
y^{\prime} y^{\prime \prime}-t=0, \quad y(1)=2, \quad y^{\prime}(1)=1 .
$$

18.034 Midterm \#1

Name:
2. Consider the differential equation $y^{\prime}=y(5-y)(y-4)^{2}$.
(a) (7 points) Determine the critical points (stationary solutions).
(b) (5 points) Sketch the graph of $f(y)=y(5-y)(y-4)^{2}$.
(c) (8 points) Discuss the stability of critical points in part (b).

18.034 Midterm \#1

Name:

3. (20 points) Determine the values of a, if any, for which all solutions of the differential equation

$$
y^{\prime \prime}-(3-a) y^{\prime}-2(a-1) y=0
$$

tend to zero as $t \rightarrow \infty$. Here, ${ }^{\prime}=\frac{d}{d t}$.

18.034 Midterm \#1

Name:

4. Consider the undamped forced vibration system

$$
y^{\prime \prime}+y=3 \cos \omega t, \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

(a) (10 points) Find the solution for $\omega \neq 1$.
(b) (5 points) Find the solution for $\omega=1$.
(c) (5 points) Discuss the behavior of solutions in part (a) and part (b).

18.034 Midterm \#1

Name:

5. (a) (5 points) State the Sturm Comparison Theorem.
(b) (15 points) Show that no nontrivial solution of $y^{\prime \prime}+\left(1-t^{2}\right) y=0$ vanishes infinitely often on $0<t<\infty$.
