MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem set 7, Solution keys

1. (a) -
(b) $Y(s)=\frac{P_{1}(s)}{P_{2}(s)} F(s)=W(s) F(s) . \quad y=w * f$
(c) Because $W(s) \rightarrow 0$ as $s \rightarrow \infty$.

If $P_{1}=P_{2}$ then $W(s)=1$ and $w(t)=\delta(t)$. So, $y=f$.
2. (a) -
(b) Once you have a cycloid:

$T=2 \pi \frac{E}{W H}$ is calculated by mesuring the distance between two cusps.
3. (a) $(U C)^{\prime}=U^{\prime} C=(A U) C=A(U C)$ and $|U C|=|U||C| \neq 0$
(b) $V\left(t_{0}\right)$ is a non-singular matrix.
(c) Let $Y=\left(\overrightarrow{y_{1}} \overrightarrow{y_{2}}\right)$.

$$
\begin{aligned}
|Y|^{\prime} & =\left|\overrightarrow{y_{1}} \vec{y}_{2}\right|+\left|\overrightarrow{y_{1}} \overrightarrow{y_{2}}\right| \\
& =\left|A \overrightarrow{y_{1}} \overrightarrow{y_{2}}\right|+\left|\overrightarrow{y_{1}} A \overrightarrow{y_{2}}\right| \\
& =D_{1}+D_{2}=\left(a_{11}+a_{22}\right)|Y| . \quad \text { Liouviue's theorem. }
\end{aligned}
$$

4. (a) -
(b) By setting $\phi(t)=t^{m},\left(\begin{array}{cc}2 & t^{2} \\ t & t^{3}\end{array}\right)$.
(c) By setting $\phi^{\prime}(t)=e^{\frac{2}{t}},\left(\begin{array}{cc}1 & \phi(t) \\ t & t \phi(t)-\frac{t^{2}}{2} e^{\frac{2}{t}}\end{array}\right)$
5. (a) $c_{1} e^{3 t}\binom{2}{1}+c_{2} e^{-3 t}\binom{1}{-1}$.
(b) $\binom{a}{b}=c\binom{2}{1}, \mathrm{c}$ is an arbitrary const.
6. $\left(\begin{array}{l}a \\ 0 \\ c\end{array}\right), a$ and c are arbitrary.
