MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Solutions to Problemset 2

Spring 2009

1. $y(x)=\left\{\begin{array}{ll}-x+c_{1} & x<0 \\ x+c_{2} & x>0\end{array}\right.$ for some c_{1} and c_{2}.
y is continuous at $x=0 \Rightarrow c_{1}=c_{2}=0$.
But $y(x)=\left\{\begin{array}{ll}-x+c_{1} & x<0 \\ x+c_{2} & x>0\end{array}\right.$ is not differentiable at $x=0$.
2. As long as the solution is defined, $\frac{y^{\prime}}{y}=f(y)$ (y is never zero by uniqueness).
$\Rightarrow(\log |y|)^{\prime} \leq|f(y)| \leq M$ by assumption. Then

$$
\begin{equation*}
|y(x)| \leq\left|y_{0}\right| e^{M x} \tag{1}
\end{equation*}
$$

For $a>0$, consider the rectangle $\left\{(x, y):|x| \leq a,|y| \leq\left|y_{0}\right| e^{M a}\right\}$. If the solution does not exist on $x \in(-a, a)$, then $|y(a)|=\left|y_{0}\right| e^{M a}$. This contradicts (??).
3. Let $\alpha=a+i b, \beta=c+i d$. In terms of polar coordinate functions,

$$
y^{\prime \prime}=\operatorname{Im}(\alpha \beta) \frac{\cos (\theta) \operatorname{Re}\left((\beta+i \alpha) e^{i \theta}\right)}{\operatorname{Re}\left(\alpha e^{-i \theta}\right)}
$$

So $y^{\prime \prime}$ changes signs at slopes $-b / a, \infty$ and $\frac{b-c}{a+d}$.
4. (a) u solves the $\mathrm{DE} y^{\prime}+\left(-b(x)+2 c(x) y_{1}(x)\right) y+c(x) y^{2}=0$.
(b) $y_{1}(x)=x, u(x)=-\frac{1}{x+c}$.
5. (a) $c_{1} \sin x+c_{2} \cos x$
(b) $-\sin 2 x, 3,2 e^{x}$
(c) $-b \sin x-\sin 2 x+3+2 e^{x}$
6. (a) $\ddot{u}+(p-1) \dot{u}+q u=0, \cdot=\frac{d}{d t}$
(b) $\sin \log |x|, \cos \log |x|$
(c) No solutions

