18.034 Honors Differential Equations Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Solutions to Problemset 1

Spring 2009

- 1. (b) a = 1 or a = 4
- 2. (a) $y(\pi/6) = e^2$
 - (b) Same as part (a)
 - (c) Because $\frac{dx}{x}$ is not integrable on any interval containing the point x = 0.
- 3. (a) y is increasing because $y' = y^2 + 1 > 0$. The formula is obtained by the separation of variables.
 - (b) $y(x) = \tan(x-c)$ is defined on the interval $(c \pi/2, c + \pi/2)$.
- 4. (b) Let $c = \sup\{x : y(x) = 0\}$. If $c = +\infty$, then $y = y_1$. If $c < +\infty$, then y(x) = 0 for $x \le c$ and $y(x) = (x - c)^{3/2}$ for x > c by the separation of variables and uniqueness.
- 5. Let $q(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0, a_n \neq 0$

The general solution $y(x) = c/x + \frac{a_n}{n+1}x^n + \frac{a_{n-1}}{n}x^{n-1} + \ldots + a_0, (x \neq 0)$ where c is constant admits the only polynomial solution when c = 0.

6. (a) $\frac{1}{1-n}u' + p(x)u = q(x)$. (b) $y = u^{-1/2}$ where u' - 2u = -2x for $y \neq 0$.