MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Solutions to Problemset 1

Spring 2009

1. (b) $a=1$ or $a=4$
2. (a) $y(\pi / 6)=e^{2}$
(b) Same as part (a)
(c) Because $\frac{d x}{x}$ is not integrable on any interval containing the point $x=0$.
3. (a) y is increasing because $y^{\prime}=y^{2}+1>0$. The formula is obtained by the separation of variables.
(b) $y(x)=\tan (x-c)$ is defined on the interval $(c-\pi / 2, c+\pi / 2)$.
4. (b) Let $c=\sup \{x: y(x)=0\}$.

If $c=+\infty$, then $y=y_{1}$. If $c<+\infty$, then $y(x)=0$ for $x \leq c$ and $y(x)=(x-c)^{3 / 2}$ for $x>c$ by the separation of variables and uniqueness.
5. Let $q(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}, a_{n} \neq 0$

The general solution $y(x)=c / x+\frac{a_{n}}{n+1} x^{n}+\frac{a_{n-1}}{n} x^{n-1}+\ldots+a_{0},(x \neq 0)$ where c is constant admits the only polynomial solution when $c=0$.
6. (a) $\frac{1}{1-n} u^{\prime}+p(x) u=q(x)$.
(b) $y=u^{-1 / 2}$ where $u^{\prime}-2 u=-2 x$ for $y \neq 0$.

