MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Problem Set \#8

(modified on April 27, 2009)
Due by Friday, May 1, 2009, by NOON.

1. An $n \times n$ complex matrix A is called Hermitian if $A=A^{*}$, where A^{*} is the conjugate transpose of A. That is, $a_{i j}=\bar{a}_{j i}$ for all $1 \leq i, j \leq n$. When A is real $A^{*}=A^{T}$ and the terms "Hermitian" and "symmetric" mean the same thing. If $\vec{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $\vec{v}=\left(v_{1}, \ldots, v_{n}\right)$ are column vectors in \mathbb{R}^{n}, then $\vec{u} \vec{v}^{*}=u_{1} \bar{v}_{1}+\cdots+u_{n} \bar{v}_{n}$ and $\|u\|^{2}=u u^{*}$.

If $A=A^{*}$ show that all eienvalues of A are real. Furthermore, if $A=A^{*}$ then eigenvectors \vec{u} and \vec{v} corresponding to different eigenvalues λ and μ are orthogonal. That is, $\vec{u} \vec{v}^{*}=0$.
2. If A and B are $n \times n$ matrices, compute

$$
\lim _{t \rightarrow 0} \frac{e^{A t} e^{B t}-e^{B t} e^{A t}}{t^{2}}
$$

3. (a) Let A be a 3×3 matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$. Show that the nonzero columns of $\left(A-\lambda_{2} I\right)\left(A-\lambda_{3} I\right)$ are eigenvectors for λ_{1}.
(b) A 3×3 matrix A has characteristic polynomial $p(\lambda)=\lambda\left(\lambda^{2}-1\right)$. Find $e^{A t}$.
4. (a) For $x^{\prime}=6 x+y, y^{\prime}=4 x+3 y$ show that the origin is an unstable node.
(b) If $y=m x$ is a trajectory, show that $m=1$ or $m=-4$.
(c) Sketch the trajectories in the (x, y)-plane.
5. Repeat Problem 4 for $x^{\prime}=-3 x+2 y, y^{\prime}=-3 x+4 y$.
6. Consider the differential equation $u^{\prime \prime}+p(t) u^{\prime}+q(t) u=0$, where $p(t), q(t)$ are continuous functions on some interval of t.
(a) Let

$$
u(t)=r(t) \sin \theta(t), \quad u^{\prime}(t)=r(t) \cos \theta(t) .
$$

Show that

$$
\begin{aligned}
d \theta / d t & =\cos ^{2} \theta+p(t) \cos \theta \sin \theta+q(t) \sin ^{2} \theta \\
(1 / r) d r / d t & =-p(t) \cos ^{2} \theta+(1-q(t)) \cos \theta \sin \theta
\end{aligned}
$$

(b) Using part (a) discuss that if $q(t)>p^{2}(t) / 4$ then solutions are oscillatory and if $q(t)<0$ then solutions are nonoscillatory.

