MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Problem Set \#7

(modified on April 13, 2009)
Due by Friday, April 17, 2009, by NOON.

1. In many applications the input f and the output y are related by $L_{2} y=L_{1} f$, where L_{1} and L_{2} are linear differential operators.
(a) If P_{j} is the characteristic polynomial of $L_{j}, j=1,2$, show that

$$
P_{2}(s) Y(s)=P_{1}(s) F(s)+P_{0}(s),
$$

where $P_{0}(s)$ is a polynomial depending on the initial conditions of both f and y.
(b) The null initial condition gives the transfer function $W(s)=P_{1}(s) / P_{2}(s)$. If $W(s)=\mathcal{L} w$, express y by the convolution theorem.
(c) We can have a function w as in part (b) only if the degree of P_{1} is less than that of P_{2}. Why? What happens to the formula of part (b) if $P_{1}=P_{2}$?
2. One method of determining the ratio e / m of charge to mass for an electron leads to the system

$$
m x^{\prime \prime}+H e y^{\prime}=e E, \quad m y^{\prime \prime}-H e x^{\prime}=0 .
$$

The initial values are $x(0)=x^{\prime}(0)=y(0)=y^{\prime}(0)=0$ and m, e, H, E are positive constants.
(a) Solve by the Laplace transform and show that the path of a particle in the coordinates (x, y) are given by

$$
x(t)=E(\omega H)^{-1}(1-\cos \omega t), \quad y(t)=E(\omega H)^{-1}(\omega t-\sin \omega t),
$$

where $\omega=H e / m$. This is a cycloid generated by a circle of radius $E(\omega H)^{-1}$.
(b) How can one determine the system-parameter e / m from knowledge of the path and the values E and H set by the experimenter?
3. Consider the system of differential equations $Y^{\prime}=A Y$, where

$$
Y=\left(\begin{array}{ll}
y_{11}(t) & y_{12}(t) \\
y_{21}(t) & y_{22}(t)
\end{array}\right), \quad A=\left(\begin{array}{ll}
a_{11}(t) & a_{12}(t) \\
a_{21}(t) & a_{22}(t)
\end{array}\right) .
$$

(a) If $U(t)$ is a fundamental solution and C is a nonsingular matrix, show that $U C$ is also a fundamental solution.
(b) If $V(t)$ is a fundamental solution, show that $U(t)=V(t) V\left(t_{0}\right)^{-1}$ satisfies $U\left(t_{0}\right)=I$ and is also a fundamental solution.
(c) Show that $|Y|^{\prime}=D_{1}+D_{2}$, where

$$
D_{1}=\left|\begin{array}{cc}
a_{11} y_{11}+a_{12} y_{21} & a_{11} y_{12}+a_{12} y_{22} \\
y_{21} & y_{22}
\end{array}\right|=a_{11}|Y|
$$

and $D_{2}=a_{22}|Y|$. Deduce the Liouville theorem.
4. (a) Show that if $\left(y_{1}(t), y_{2}(t)\right)$ is a solution of

$$
t^{2} y_{1}^{\prime}=-2 t y_{1}+4 y_{2}, \quad t y_{2}^{\prime}=-2 t y_{1}+5 y_{2}
$$

then both y_{1} and y_{2} are solutions of the Euler equation

$$
\left(t^{2} \phi^{\prime}+2 t \phi\right)^{\prime}=\underset{1}{-8 \phi+5\left(t \phi^{\prime}+2 \phi\right)}
$$

(b) Find a fundamental matrix for $\left(\begin{array}{cc}-2 t^{-1} & 4 t^{-2} \\ -2 & 5 t^{-1}\end{array}\right)$
(c) For $A=\frac{1}{t^{2}}\left(\begin{array}{cc}2 t & -2 \\ t^{2}+2 t & -2\end{array}\right)$ obtain a fundamental matrix.
5. Solve the initial value problem

$$
\frac{d}{d t}\binom{y_{1}}{y_{2}}=\left(\begin{array}{cc}
1 & 4 \\
2 & -1
\end{array}\right)\binom{y_{1}}{y_{2}}, \quad\binom{y_{1}(0)}{y_{2}(0)}=\binom{0}{3}
$$

(a) by using the eigenvalues and (b) by using the Laplace transform.
(c) For which values of a and b, the solution of the initial value problem

$$
\frac{d}{d t}\binom{y_{1}}{y_{2}}=\left(\begin{array}{cc}
1 & 4 \\
2 & -1
\end{array}\right)\binom{y_{1}}{y_{2}}, \quad\binom{y_{1}(0)}{y_{2}(0)}=\binom{a}{b}
$$

has the behavior $\lim _{t \rightarrow \infty}\left(y_{1}(t), y_{2}(t)\right)^{T}=(0,0)$?
6. For which vector (a, b, c), is the solution of the initial value problem

$$
\frac{d}{d t}\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 0 \\
1 & -1 & -1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right), \quad\left(\begin{array}{l}
y_{1}(0) \\
y_{2}(0) \\
y_{3}(0)
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

periodic in t ?

