MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Problem Set \#6

(modified on April 8, 2009)

Due by Friday, April 10, 2009, by NOON.

1. (Laplace transform of t^{r}). The Gamma function is defined by the integral

$$
\Gamma(r+1)=\int_{0}^{\infty} e^{-t} t^{r} d t
$$

(a) Show that the improper integral converges for all $r>-1$.
(b) Show that $\Gamma(r+1)=r \Gamma(r)$ for $r>0$. Show that $\Gamma(1)=1, \Gamma(1 / 2)=\sqrt{\pi}$.
(c) For $r>-1$ show that $\mathcal{L}\left[t^{r}\right]=\Gamma(r+1) / s^{r+1}, s>0$
2. (a) Find the solution of the initial value problem

$$
y^{\prime \prime}+\omega^{2} y=h(t) \sin t-h(t-c) \sin t, \quad y(0)=y^{\prime}(0)=0,
$$

where $c>0$ is a constant and $\omega^{2} \neq 1$.
(b) Show that $y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=0$. Show that y and y^{\prime} are continuous at $t=c$.
(c) Show that $y^{\prime \prime}(c+)-y^{\prime \prime}(c-)=-\sin c$, which is 0 if and only if $c=n \pi$ for n an integer. This behavior is explained by that the function $h(t-c) \sin t$ is continuous at c if and only if $\sin c=0$.
3. Find the Laplace transform of a full rectified wave* $f(t)=|\sin t|$.
4. Find the solution of the initial value problem

$$
y^{\prime \prime}+y=A \delta(t-c), \quad y(0)=a, \quad y^{\prime}(0)=b
$$

where A, a, b, c are constant and $c>0$.
(b) Show that $y(t)=0$ for $t \geq c$ if and only if $y(c)=0$ and

$$
A=\sqrt{a^{2}+b^{2}}, \quad a \sin c \geq b \cos c ; \quad A=-\sqrt{a^{2}+b^{2}}, \quad a \sin c \leq b \cos c
$$

To interpret, these amplitudes A and locations of impulse c cancel the oscillation.
5. (The Volterra integral equation). Consider the integral equation

$$
y(t)+\int_{0}^{t}(t-s) y(s) d s=-\frac{1}{4} \sin 2 t .
$$

(a) Show that the above integral equation is equivalent to the initial value problem

$$
y^{\prime \prime}+y=\sin 2 t, \quad y(0)=0, \quad y^{\prime}(0)=-\frac{1}{2} .
$$

(b) Solve the integral equation by using the Laplace transform.
6. Consider the Bessel equation of order zero

$$
t y^{\prime \prime}+y^{\prime}+t y=0
$$

Note that $t=0$ is a singular point and thus solutions may become unbounded as $t \rightarrow 0$. Nevertheless, let us try to determine whether there are any solutions that remain finite at $t=0$ and have finite derivatives there.
(a) Show that $Y(s)=\mathcal{L}[y](s)$ satisfies $\left(1+s^{2}\right) Y^{\prime}(s)+s Y(s)=0$.
(b) Using the binomial series for $\left(1+s^{2}\right)^{-1 / 2}$ for $s>1$ show that

$$
y(t)=c \sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n}}{2^{2 n}(n!)^{2}}
$$

which is referred to as the Bessel function of the first kind of order zero. Show that $y(0)=1$ and y has finite derivatives for all orders at $t=0$.

