MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Problem Set \#5

(modified on March 30, 2009)
Due by Friday, April 3, 2009, by NOON.

1. (a) Let $f_{n}(t), n=1,2, \ldots$ be continuous functions on an interval $[a, b]$ and $\left\{f_{n}(t)\right\}$ converge uniformly to $f(t)$ on $[a, b]$. Show that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(t) d t=\int_{a}^{b} f(t) d t
$$

(b) Construct $\left\{f_{n}(t)\right\}$ on $[0,1]$ such that the above equality does not hold true.
2. For the initial value problem $x^{\prime}=f(t, x)$ with $x\left(t_{0}\right)=x_{0}$, where f is continuous and Lipschitzian in the rectangle $\left|t-t_{0}\right| \leq T$ and $\left|x-x_{0}\right| \leq K$ with the Lipschitzian constant L, suppose the exact solution x and the Picard iterates x_{n} all exist over one and the same interval of t. Show that on such an interval

$$
\left|x(t)-x_{n}(t)\right| \leq M L^{n} \frac{T^{n+1}}{(n+1)!} e^{L T}
$$

where $|f(t, x)| \leq M$ in $\left|t-t_{0}\right| \leq T$ and $\left|x-x_{0}\right| \leq K$.
3. Let f be a real-valued continuous function in the rectangle $\left|t-t_{0}\right| \leq T$ and $\left|x-x_{0}\right| \leq K$. Consider the initial value problem

$$
\begin{equation*}
x^{\prime \prime}=f(t, x), \quad x\left(t_{0}\right)=x_{0}, \quad x^{\prime}\left(t_{0}\right)=x_{1} . \tag{1}
\end{equation*}
$$

(a) Show that ϕ is a solution of (1) if and only if ϕ is a solution of the integral equation

$$
\begin{equation*}
x(t)=x_{0}+\left(t-t_{0}\right) x_{1}+\int_{t_{0}}^{t}(t-s) f(s, x) d s \tag{2}
\end{equation*}
$$

(b) Let $\left\{x_{n}\right\}$ be a successive approximation for (2). That is, $x_{0}(t)=x_{0}$ and

$$
x_{n}(t)=x_{0}+\left(t-t_{0}\right) x_{1}+\int_{t_{0}}^{t}(t-s) f\left(s, x_{n-1}\right) d s \quad n=1,2, \ldots
$$

If $f(t, x)$ is continuous and Lipshitzian with respect to x in the rectangle $\left|t-t_{0}\right| \leq T$ and $\left|x-x_{0}\right| \leq$ K, show that $\left\{x_{n}\right\}$ converges on the interval $\left|t-t_{0}\right| \leq \min (T, K / B)$ to the solution of (1), where $B=\left|x_{1}\right|+M T / 2$ and $|f(t, x)| \leq M$ in $\left|t-t_{0}\right| \leq T$ and $\left|x-x_{0}\right| \leq K$.
4. (a) Show that $\mathcal{L}(1 / \sqrt{t})(s)=\sqrt{\pi / s}$ by using the well-known formula* $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$.
(b) Use part (a) to show that $\mathcal{L}(\sqrt{t})(s)=\frac{\sqrt{\pi}}{2 s^{3 / 2}}$ for $s>0$.
5. (a) Show that $\mathcal{L}\left(e^{t^{2}}\right)(s)$ does not exist for any interval of the form $s>a$.
(b) For what values of k, will $\mathcal{L}\left(1 / t^{k}\right)$ exist?
6. Find the functions whose Laplace transforms are the following functions:
(a) $\frac{5 s-6}{s^{2}+4}+\frac{2}{s^{\prime}}$,
(b) $\frac{9 s+3}{9 s^{2}+6 s+19}$.

[^0]
[^0]: *A mathematician is one to whom that is as obvious as that twice two makes four is to you. Liouville was a mathematician. - Lord Kelvin

