MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Problem Set \#3

Due by Friday, March 6, 2009, by NOON.

1. This problem pertains to the differential equation $y^{\prime \prime}+\omega^{2} y=\sin \omega_{0} t$, where $\omega \neq 0$ and ω_{0} is close to but different from ω.
(a) Verify that $y_{1}(t)=\frac{\sin \omega_{0} t}{\omega^{2}-\omega_{0}^{2}}$ is a particular solution.
(b) As $\omega_{0} \rightarrow \omega$ show that one of the initial conditions $y_{1}(0)$ or $y_{1}^{\prime}(0)$ becomes infinite.
(c) Check that $y_{2}(t)=\frac{\sin \omega_{0} t-\sin \omega t}{\omega^{2}-\omega_{0}^{2}}$ is the particular solution for which the initial conditions remain finite as $\omega_{0} \rightarrow \omega$.
(d) By l'Hospital's rule show that the limit as $\omega_{0} \rightarrow \omega$ of $y_{2}(t)$ gives a particular solution of $y^{\prime \prime}+$ $\omega^{2} y=\sin \omega t$.
2. Let $f(x)$ and $g(x)$ be two solutions of the differential equation $y^{\prime}=F(x, y)$ in a domain where F satisfies the condition*:

$$
y_{1}<y_{2} \quad \text { implies } \quad F\left(x, y_{2}\right)-F\left(x, y_{1}\right) \leq L\left(y_{2}-y_{1}\right) .
$$

Show that

$$
|f(x)-g(x)| \leq e^{L(x-a)}|f(a)-g(a)| \quad \text { if } \quad x>a
$$

3. Very that $(\sin x) / x, x$ satisfy the following equations, respectively, and thus obtain the second solution.
(a) $x y^{\prime \prime}+2 y^{\prime}+x y=0 \quad(x>0)$,
(b) $(2 x-1) y^{\prime \prime}-4 x y^{\prime}+4 y=0 \quad(2 x>1)$.
4. (a) Birkhoff-Rota, pp. 57, \#4. (Typo. $I(x)=q-p^{2} / 4-p^{\prime} / 2$.)
(b) Birkhoff-Rota, pp. 57, \#7(a). (Use part (a) instead of \#6 as is suggested in the text.)
(c) Birkhoff-Rota, pp. 57, \#7(b).
5. Let $(\cosh x) y^{\prime \prime}+(\cos x) y^{\prime}=\left(1+x^{2}\right) y$ for $a<x<b$ and let $y(a)=y(b)=1$. Show that $0<y(x)<1$ for $a<x<b$.
6. (a) Birkhoff-Rota, pp. 75, \#3, (b) Birkhoff-Rota, pp. 75, \#4.
[^0]
[^0]: *It is called a one-sided Lipschitz condition.

