MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Problem Set \#1

Due by Friday, February 13, 2009, by NOON.

1. (a) Verify that $y=x^{a}$ solves the differential equation $x^{2} y^{\prime \prime}=2 y$ if the constant a satisfies the equation $a^{2}-a-2=0$. Thus get the two solutions x^{2} and x^{-1}. Note that the first is valid on the whole interval $-\infty<x<\infty$ but the second on $-\infty<x<0$ or $0<x<\infty$ only.
This behavior is typical for a broad class of linear homogeneous equations known as equations of Euler type. For this class the substitution $y=x^{a}$ always lead to an algebraic equation for a.
(b) The equation $x^{2} y^{\prime \prime \prime \prime}=2 y^{\prime \prime}$ admits a solution $y=x^{a}$, where a is a nonzero constant. What are the possible values of a ?
2. Suppose a function $y=f(x)$ satisfies the differential equation $d y=4 y \sin 2 x d x$ and the initial condition $y(\pi)=e$. The purpose of this exercise is to find $y(\pi / 6)$.
(a) Separate variables and integrate to obtain $\ln y=c-2 \cos 2 x, y>0$. By use of the initial condition show that $c=3$, and then get $y(\pi / 6)$.
(b) The initial condition $y(\pi)=e$ means that $x=\pi$ corresponds to $y=e$. Likewise, $x=\pi / 6$ corresponds to $y=a$, where $a=y(\pi / 6)$. Integrating between corresponding limits gives

$$
\int_{e}^{a} \frac{d y}{y}=\int_{\pi}^{\pi / 6} 4 \sin 2 x d x
$$

Evaluate the definite integrals and solve the resulting equation for a.
(c) If $x d y+3 y d x=0$ and $y(-\pi)=e$ you can't find $y(\pi)$. Why not?
3. Birkhoff-Rota, pp. 5, \#3.
4. (a) Show that $y_{1}(x)=0$ and $y_{2}(x)=x^{3 / 2}$ are solutions for $x \geq 0$ of the differential equation $y^{\prime}=(3 / 2) y^{1 / 3}$.
(b) Discuss that all nonnegative solutions of the differential equation in part (a) starting at $(0,0)$ lie between two solutions y_{1} and y_{2} and that the solution

$$
y(x)=\left\{\begin{array}{lll}
0 & \text { for } & x<c \\
(x-c)^{3 / 2} & \text { for } & x \geq c
\end{array}\right.
$$

fills out the funnel between them.
5. Birkhoff-Rota, pp. 11, \#7. (Typo. k is n.)
6. (The Bernoulli equation.) It is a differential equation of the form $y^{\prime}+p(x) y=q(x) y^{n}$ with $n \neq 1$.
(a) Show that it becomes linear by the change of variable* $u=y^{1-n}$. (Hint. Begin by dividing both sides of the equation by y^{n}.)
(b) Solve the Bernoulli equation $y^{\prime}+y=x y^{3}$ using the method in part (a).

[^0]
[^0]: *This trick was found by Leibniz in 1696.

