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18.034 SOLUTIONS TO PRACTICE FINAL EXAM, SPRING 2004 

The final exam will be held on Thursday, May 20, 9:00AM–12:00NOON. The final 
exam will be closed notes, closed book, and calculators will not be permitted. Scratch paper and a 
stapler will be available. A short list of Laplace transforms will be provided (the same as the list on 
Exam 3). The following problems are representative of the problems on the exam. 

Problem 1 Two different chemical solutions are pumped into a container of volume 100 L, each at 
the rate of 5 L/s, and thoroughly mixed solution is pumped out at the rate of 10 L/s. The inflow 
concentration of Chemical 1 is q1 and the inflow concentration of Chemical 2 is q2. Denote the mass 
of Chemical 1 by x1 and the mass of Chemical 2 by x2. A catalyst in the container transforms 
Chemical 1 into Chemical 2 at a rate 0.4x1 per second. 

(a) Determine the 2× 2 linear system of 1st order ODEs that x1 and x2 satisfy. 

Solution: For x1 there are three contributions to x�1. Chemical flows in at a rate 5q1. Chemical 
flows out at a rate −10 × (x1/100), i.e. −0.1x1. And chemical is catalyzed at a rate −0.4x1. For x1, 
chemical flows in at a rate 5q1, chemical flows out at a rate −10 × (x2/100) = −0.1x2, and Chemical 
1 is catalyzed into Chemical 2 at a rate +0.4x1. Therefore the differential equations are, 

x� = −0.5x1 + 5q1,1 

x� = 0.4x1 + (−0.1)x2 + 5q22 

In matrix form, this is, � � � � � � � � 
x1 

� 
= −0.5 0 x1 5q1 

0.4 −0.1 x2 
+ 5q2 

. 
x2 

(b) Without finding the general solution, determine the steadystate solution for x1 and x2. 

Solution: In the steadystate, x� = 0 and x� = 0. Solving the equations gives, 0.5x1 = 5q1 and1 2 

0.1x2 = 0.4x1 + 5q2. The solution is, 

x1 = 10q1, 
x2 = 40q1 + 50q2 

Problem 2 Consider the following inhomogeneous linear 1st order ODE on the interval t > 1. 

1 t + 1 
y� + 

t2 − 1
y = 

t − 1
. 

(a) Let a > 0 be a real number, and let u(t) be the function, 
a 

u(t) = 
t − 1 

. 
t + 1 

dCompute u�/u = dt ln(u(t)). 

Solution: By definition, 
ln(u(t)) = a ln(t − 1) − a ln(t + 1). 

Therefore, 
d a a 2a 

u�(t)/u(t) = = . 
dt 

ln(u(t)) = 
t − 1 

− 
t + 1 t2 − 1

Date : Spring 2004. 
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(b) Find a value of a such that u(t) is an integrating factor. 

Solution:	 If u(t) is an integrating factor, then 

1 
u�(t) = 

t2 − 1
u(t). 

1By part (a), this holds if a = 2 . Therefore an integrating factor is, 

u(t) = 
t− 1 
t+ 1

. 

(c) Find the general solution of the ODE. 

Solution: Multiplying both sides of the equation by an integrating factor yields,


t+ 1
y� +

1 t− 1t− 1 
t+ 1

y = 1,
t− 1 
t+ 1

y = 1. 
t2 − 1 

Integrating gives, 
t− 1	 t+ 1 
t+ 1

y = t+ C, y(t) = 
t− 1

(t+ C). 

(d) Find the unique solution y(t) such that the limit, 

lim y(t), 
t 1+ →

exists and is bounded.


Solution: If C −1, then the solution for t > 1 is,
= 

t+ 1 
y(t) = 

t− 1
(t− 1) =
 t2 − 1. 

As t 1+, this is bounded and the limit equals 0. → 

Problem 3 A basic solution pair of the homogeneous linear 2nd order ODE, 
2t 1 

y�� +	 = 0, 
t2 − 1

y� − 16
(t2 − 1)2 

y

is given by {y1, y2}, 

y1(t) =

t− 1

t+ 1


�2 �2 t+ 1 
, y2(t) = 

t− 1 
. 

(a) Compute the Wronskian W [y1, y2](t). 

Solution:	 By part (a) from Problem 2, 
4 

y1(t)/y1(t) = 
t2 − 1

, y2(t)/y2(t) = 
t2
−
− 
4
1
. 

Therefore the Wronskian determinant is, 

W [y1, y2](t) =

y1(t) y2(t) 
4 
−1
y1(t) t2

−
−
4
1
y2(t) 

=

−
− 
8
1
y1(t)y2(t). 

t2 t2

But of course, y1(t)y2(t) = 1. Therefore the Wronskian is, 

W [y1, y2](t) = 
t2
−
− 
8
1
. 
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(b) Use variation of parameters to find a particular solution of the inhomogeneous ODE, 
2t 1 2 y�� + 

t2 − 1
y� − 16

(t2 − 1)2 
y = t − 1. 

Solution: The Green’s kernel for variation of parameters is, 
1 2K(s, t) = (y1(s)y2(t)− y1(t)y2(s))/W [y1, y2](s) = 
8
(s − 1)(y1(s)y2(t)− y1(t)y2(s)).− 

Therefore the integrand for variation of parameters is, 
1 2K(s, t)f(s) = − 
8
(s − 1)2(y1(s)y2(t)− y1(t)y2(s)). 

Simplifying, 
2 2(s − 1)2 y1(s) = (s − 1)4 , (s − 1)2 y2(s) = (s + 1)4 . 

Therefore the integrand is, 
1 − 
8
(y2(t)(s − 1)4 − y1(t)(s + 1)4). 

Therefore a particular solution is, 
1 1 

yp(t) = K(s, t)f(s)ds = − 
8
y2(t) (s − 1)4ds +

8
y1(t) (s + 1)4ds. 

Carrying out the antidifferentiations, a particular solution is, � �21 t + 1 1 1 2− 
40

(t − 1)5 

t − 1 
+ 

40
(t + 1)5 

� 
t − 1

�2 

= 
40

(t − 1)2[−(t − 1) + (t + 1)], 
t + 1 

i.e., 
1 2 yp(t) = 
20

(t − 1)2 . 

Problem 4 Using the method of undetermined coefficients, find a particular solution of the inho
mogeneous linear 2nd order ODE, 

y�� + 4y� + 5y = 5e−2t cos(t). 

Solution: The function 5e−2t cos(t) is the real part of 5e−2teit. Therefore a particular solution yp(t) 
is the real part of a particular solution y�p(t) of, 

it y��� + 4y�� + 5y�= 5e−2t e . 

e(−2+i)tWe guess that a particular solution is of the form y�(t) = g(t), where g(t) is a polynomial 
whose coefficients are undetermined. By the exponential shift rule, 

y��� + 4y�� + 5y�=

(D2 + 4D + 5)e(−2+i)tg(t) =


e(−2+i)t((D − 2 + i)2 + 4(D − 2 + i) + 5)g(t) =

e(−2+i)t(D2 + 2iD)g(t)


Therefore y�(t) is a particular solution iff g(t) is a particular solution of the differential equation, 

(D2 + 2iD)g(t) = 5. 

We guess that g(t) is a linear polynomial with undetermined coefficients and substitute in to deter
mine the coefficients. This gives, 

5 
g(t) = t = 

−5i
t.

2i 2 
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Therefore, 
5 

y�(t) = 
−5i

te(−2+i)t = te−2t(sin(t)− i cos(t)).
2 2

So a particular solution of the original ODE is, 
5 

yp(t) = Re(y�(t)) = te−2t sin(t).
2

Problem 5 On the interval [0, π), let f(t) = cos(2t). Denote by f�(t) the odd extension of f(t) as a 
periodic function of period 2π. Denote by FSS[ f�] the Fourier sine series of f�(t). 
(a) Graph FSS[ f�] on the interval [−3π, 3π]. Make special note of all discontinuities and the actual 
value	 of FSS[ f�] at these points (which does not necessarily agree with the value of f�). 
Solution: A graph of FSS[f ] is The points of discontinuity occur for t = nπ, 
where n is any integer. The value of FSS[f ] at these points is, 

1
FSS[ f ](nπ) =

1 
lim f(t) + lim f(t) =

2
(1 + (−1)) = 0.

2 t nπ− t nπ+ → →

4 

given below.
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(b) An orthonormal basis for the odd periodic functions of period 2π is, 
1 

φn(t) = √
π 

sin(nt), n = 1, 2, 3, . . . 

Compute the Fourier coefficients, � π 
an = � �f, φn� = f(t)φn(t)dt, 

−π 

and express your answer as a Fourier sine series, 
∞	

an
f(t) = anφn(t) = √

π 
sin(nt). 

n=1 n=1 

Play close attention to n = 2. 

Solution: By definition, � π	 � π 1 
an = 2 f(t)φn(t)dt = 2 √

π 
cos(2t) sin(nt)dt. 

0	 0 

To evaluate this, we use the angle addition formulas, 

sin(nt + 2t) = sin(nt) cos(2t) + sin(2t) cos(nt), 
sin(nt − 2t) = sin(nt) cos(2t) − sin(2t) cos(nt) 

Hence, 
1

cos(2t) sin(nt) = 
2 

(sin((n + 2)t) + sin((n − 2)t)) . 

Substituting this in the integrand gives, � π1 
an = sin((n + 2)t) + sin((n − 2)t)dt. √

π 0 

First of all, for n = 2, this gives, � �π1	 � 
a2 =

1 
� π 

sin(4t) + 1dt = √
π 

−
4
1 

cos(4t) + t = 
√
π.√

π 0 

� 
0 

4 
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Now suppose that n = 2. Then both n + 2 and n − 2 are invertible. Hence, � 
� � � �

1 1 1 1 1 
an = 

−1 
n + 2 

cos((n + 2)t) + 
n − 2 

cos((n − 2)t) = √
π n + 2

((−1)n − 1) + 
n − 2

((−1)n − 1) .√
π 

If n is even, then (−1)n = 1 and an = 0. If n is odd, then (−1)n − 1 = −2 and, 

2 1 1 2 2n 4n 
an = + = = √

π(n2 − 4)
.

2
√
π n + 2 n − 2 

√
π n − 4 

Therefore the Fourier sine series of f(t) is, 

4 ∞� 2m + 1 
FSS[ f�] = sin(2t) + 

(2m + 3)(2m − 1) 
sin((2m + 1)t). 

π 
m=0 

Problem 6 On the interval [−π, π), let f(t) be the squarewave function, 

f(t) = 1, 0 ≤ t < π, 
−1, −π ≤ t < 0 

Let f�(t) be the extension of f(t) to a periodic function of period 2π. An orthonormal basis for the 
periodic functions of period 2π is, 

1 int φn(t) = √
2π
e , n ∈ Z. 

(a) Compute the Fourier coefficients, � π 1 
an(f�) = � �f, φn� = √

2π
f(t)e−intdt. 

−π 

Solution: The Fourier coefficient is, � 0 1 
� π 1

(−1)e−intdt +an =
 √
2π 0 

√
2π

(1)e−intdt.

−π 

In the first integral, make the substitution u = −t to get, � π 
an = 

−1 
� π 

(e int − e−int)dt = 
−2i 

sin(nt)dt. √
2π 0 

√
2π 0 

If n = 0 then a0 = 0. If n �= 0 then, � �π2i 1 �� 2i 
an = √

2π n 
cos(nt) = ((−1)n − 1).� √

2πn 0 

If n is even, then an = 0. If n is odd, then, 
−4i 

an = .√
2πn 

(b) Denote by y(t) the periodic function of period 2π that solves the ODE, 

y�� + 4y� + 5y = f(t). 

Using (a), compute the Fourier coefficients, 

an(y) = �y, φn�. 

Solution: Of course an(y�) = inan(y) and an(y��) = −n2an(y). Taking Fourier coefficients of each 
side of the equation gives, 

(−n 2 + 4in + 5)an(y) = an(f�). 
6
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For every integer n, −n2 + 4in + 5 is nonzero. Therefore an(y) is zero unless n is odd. In this case, 

(−n 2 + 4in + 5)an(y) = 
−4i

.√
2πn 

Multiplying each side by the complex conjugate ((5− n2)− 4in) and solving for an(y) gives, 

an(y) = i|an e−iψn , n a positive odd integer, 
−i|a

|
n|eiψn , n a negative odd integer 

where, 
4 1 |an| = √

2π
,

(n2 + 3)2 + 16n| |
and, 

4 n
tan(ψn) = 

n2

|
−
|
5
. 

3πThis last equation only determines ψn up to a multiple of π. For n = 1, ψ1 = . For all other odd 4 
πvalues of n, 0 < ψn < 2 . 

(c) Write down just the terms in the Fourier series of y(t) coming from n = −1 and n = 1. Express 
in terms of sine and cosine. 

Solution: First of all, for each positive odd integer n, observe that the terms coming from n and 
−n are, 

an| 1 i|an| (e i(nx−ψn) − e−i(nx−ψn)) = 
−2|√1

2π
|an ie−iψn e inx − √

2π
|an|ie iψn e−inx = √

2π
√

2π 
| 
sin(nx − ψn). 

For n = 1, |a1| = 1/(2
√
π) and ψn = 3π/4. Therefore the terms coming from n = ±1 are, 

1 
sin(x − π/4).√

2π 

Problem 7 Consider the IVP, ⎧⎨ ⎩


y�� − 4y� + 5y = 3e2t sin(t),

y(0) = 1,

y�(0) = 0


Denote by Y (s) the Laplace transform,

∞ 

e−st y(t)dt. [y(t)] =L
0 

(a) Compute the Laplace transform of the IVP and use this to find an equation that Y (s) satisfies. 

Solution: The Laplace transform of the lefthandside is, 
2L[y�� −4y� +5y] = (s 2Y −s)−4(sY −1)+5Y = (s −4s+5)Y −(s−4) = ((s−2)2+1)Y (s)−(s−2)−(−2). 

The Laplace transform of the righthandside is, 
3 L[3e 2t sin(t)] = 3L[sin(t)](s − 2) =

(s − 2)2 + 1
. 

Therefore Y (s) satisfies the equation, 
3

((s − 2)2 + 1)Y (s) = (s − 2) + (−2) +
(s − 2)2 + 1

. 

(b) Solve the equation for Y (s). No partial fractions are needed. 
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Now suppose that n = 2. Then both n + 2 and n − 2 are invertible. Hence, � 
� � � �

1 1 1 1 1 
an = 

−1 
n + 2 

cos((n + 2)t) + 
n − 2 

cos((n − 2)t) = √
π n + 2

((−1)n − 1) + 
n − 2

((−1)n − 1) .√
π 

If n is even, then (−1)n = 1 and an = 0. If n is odd, then (−1)n − 1 = −2 and, 

2 1 1 2 2n 4n 
an = + = = √

π(n2 − 4)
.

2
√
π n + 2 n − 2 

√
π n − 4 

Therefore the Fourier sine series of f(t) is, 

4 ∞� 2m + 1 
FSS[ f�] = sin(2t) + 

(2m + 3)(2m − 1) 
sin((2m + 1)t). 

π 
m=0 

Problem 6 On the interval [−π, π), let f(t) be the squarewave function, 

f(t) = 1, 0 ≤ t < π, 
−1, −π ≤ t < 0 

Let f�(t) be the extension of f(t) to a periodic function of period 2π. An orthonormal basis for the 
periodic functions of period 2π is, 

1 int φn(t) = √
2π
e , n ∈ Z. 

(a) Compute the Fourier coefficients, � π 1 
an(f�) = � �f, φn� = √

2π
f(t)e−intdt. 

−π 

Solution: The Fourier coefficient is, � 0 1 
� π 1

(−1)e−intdt +an =
 √
2π 0 

√
2π

(1)e−intdt.

−π 

In the first integral, make the substitution u = −t to get, � π 
an = 

−1 
� π 

(e int − e−int)dt = 
−2i 

sin(nt)dt. √
2π 0 

√
2π 0 

If n = 0 then a0 = 0. If n �= 0 then, � �π2i 1 �� 2i 
an = √

2π n 
cos(nt) = ((−1)n − 1).� √

2πn 0 

If n is even, then an = 0. If n is odd, then, 
−4i 

an = .√
2πn 

(b) Denote by y(t) the periodic function of period 2π that solves the ODE, 

y�� + 4y� + 5y = f(t). 

Using (a), compute the Fourier coefficients, 

an(y) = �y, φn�. 

Solution: Of course an(y�) = inan(y) and an(y��) = −n2an(y). Taking Fourier coefficients of each 
side of the equation gives, 

(−n 2 + 4in + 5)an(y) = an(f�). 
8
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Hence a basis for the solution space is, 

cos(t) sin(t)
y1(t) = e 2 cos(t)− sin(t) , y2(t) = e cos(t) + 2 sin(t) . 

Therefore the solution matrix X(t) is, 

2t 2t 

cos(t) sin(t)
X(t) = e 2 cos(t)− sin(t) cos(t) + 2 sin(t) . 2t 

(d) Compute the exponential matrix, 

exp(tA) = X(t)X(0)−1 . 

Solution: The matrix X(0) is, 

0 1 0 
X(0) = e 2 1 . 

Therefore the inverse matrix is, � � 
1 0 

X(0)−1 = −2 1 . 

Therefore the exponential matrix is, 

exp(tA) = X(t)X(0)−1 = 

cos(t) sin(t) 1 02te = 2 cos(t)− sin(t) cos(t) + 2 sin(t) −2 1 

cos(t)− 2 sin(t) sin(t)2te −5 sin(t) cos(t) + 2 sin(t) . 

(e) Denote by f(t) the vectorvalued function, 

0 
.f(t) = 3e2t sin(t) 

Denote by x0 the column vector, � � 
1 

x0 = 0 . 

For the following IVP write down the solution in terms of the matrix exponential. 

x� = Ax + f(t), 
x(0) = x0 

Compute the entries of the constant term vector and the integrand column vector, but do not 
evaluate the integrals. 

Solution: The solution of the IVP is, 
t 

x(t) = exp(tA)x0 + exp(tA) exp(−uA)f(u)du. 
0 

First of all, � � � � � � 

exp(tA)x0 = e cos(t)− 2 sin(t) sin(t) 1 2t cos(t)− 2 sin(t) 
−5 sin(t) cos(t) + 2 sin(t) 0 = e −5 sin(t) . 2t 

9
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Next, � 

exp(−uA)f(u) = e−2u cos(u) + 2 sin(u) − sin(u) 0 
.5 sin(u) cos(u)− 2 sin(u) 3e2u sin(u) 

This equals, 
−3 sin2(u) 

.3 sin(u) cos(u)− 6 sin2(u) 
So the integral is, 

t t −3 sin2(u)exp(−uA)f(u)du = 3 sin(u) cos(u)− 6 sin2(u) du. 
0 0 

Finally, without evaluating the integral, the solution is, 

x(t) = e cos(t)− 2 sin(t)2t 

−5 sin(t) + � � � � �t

2t
 cos(t)− 2 sin(t) sin(t) −3 sin2(u)
e −5 sin(t) cos(t) + 2 sin(t) 3 sin(u) cos(u)− 6 sin2(u) du. 

0 

Problem 9 Consider the following nonlinear, autonomous planar system, 

x� = (x + y)(x − 1) 
y� = (x − y)(x + 1) 

(a) Find all equilibrium points.


Solution: The equilibrium points are the simultaneous solutions of,


(x + y)(x − 1) = 0, 
(x − y)(x + 1) = 0 

These are p1 = (0, 0), p2 = (1, 1) and p3 = (−1, 1). 

(b) Determine the linearization at each equilibrium point. 

Solution: The Jacobian of the system is, 

2x + y − 1 x − 1 
∂xj 

J(x, y) = 
∂Fi = 2x − y + 1 −x − 1 . 

Therefore the linearization at pi is x� = Aix, where, 

A1 = J(0, 0) = −1 −1 
,1 −1 

where, � � 
2 0 

A2 = J(1, 1) = ,2 −2 
and where, � � 

A3 = J(−1, 1) = −2 −2 
. −2 0 

(c) For each linearization, determine the eigenvalues. If the eigenvalues are complex conjugates, 
determine the rotation (clockwise in/out, counterclockwise in/out). If the eigenvalues are real, 
determine roughly the eigenvectors and the type of the local phase portrait. 

Solution: For p1, Trace(A1) = −2 and det(A1) = 2. So pA1(λ) = λ2 + 2λ + 2 = (λ + 1)2 + 1. 
Therefore the eigenvalues are λ = −1 ± i. So the type is a stable spiral. Checking at a few ±
representative points, the rotation is counterclockwise in. 

10
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For p2, Trace(A2) = 0 and det(A2) = −4. So pA2(λ) = λ2 − 4 = (λ − 2)(λ + 2). Therefore the 
eigenvalues are λ1 = 2 and λ2 = −2. So the type is a saddle. An eigenvector for λ1 = 2 is, 

2 
v1 = 1 . 

An eigenvector for λ2 = −2 is, 
1 

v2 = 0 . 

For p3, Trace(A2) = −2 and det(A3) = −4. So pA3(λ) = λ2 + 2λ− 4 = (λ+ 1)2 − 5. Therefore the 
eigenvalues are λ3 = 

√
5− 1 ≈ 1 and λ4 = −

√
5− 1 ≈ −3. So the type is a saddle. An eigenvector 

for λ3 = 
√

5− 1 is, 
−
√

5 + 1 
� 

−1 
v3 = 2 

≈ 2 . 

And an eigenvector for λ4 = −
√

5− 1 is, � √
5 + 1 3 

v4 = 2 
≈ 2 . 

(d) Using a dashed line, sketch the xnullcline and ynullcline. Draw a few representative arrows 
indicating the direction of the orbits on the nullcline on each side of each equilibrium point. 

Solution: The xnullcline consists of the vertical line x = 1 and the “antidiagonal” line y = −x. 
On the line x = 1, y� is negative for y > 1 and y� is positive for y < 1. On the line y = −x, y� is 
positive for x > 0, y� is negative for −1 < x < 0, and y� is positive for x < −1. Notice in particular 
that the line x = 1 is a union of orbits. 

The ynullcline consists ofthe vertical line x = −1 and the diagonal line y = x. On the line x = −1, 
x� is negative for y > 1 and x� is positive for y < 1. On the line y = x, x� is positive for x > 1, x� is 
negative for 0 < x < 1, and x� is positive for x < 0. 

It is also worth noting that on the horizontal line y = 1, the vector field is (x2 − 1, x2 − 1). In 
particular, the direction is the same as (−1,−1) on the line segment y = 1, x < 1. Therefore any | |
orbit that enters the strip bounded by the following line segments is in the basin of attraction of p1, 

x = −1 
y < 1 

y = 1 
−1 < x < 1 

x = 1 
y < 1 

(e) Sketch the phase portrait. Use bold lines to indicate each (rough) separatrix. Label the basins 
of attraction (with the numbers 1, 2, 3, etc. placed at some point in the basin of attraction). Your 
sketch should just be a rough sketch, but it should be qualitatively correct. 

Solution: The orbital portrait is on the webpage. There is only a single basin of attraction – the 
one associated to p1. On the right it is bounded by the vertical line x = 1. On the left it is bounded 
by the curve made up of two orbits whose forward limit set is p3, each of which is asymptotic as 

3 + Cv4e
λ4t, for C > 0 and for C < 0. The left separatrix is solid blue in the image t → ∞ to p

given below.
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