18.034 SOLUTIONS TO PRACTICE EXAM 2, SPRING 2004

Problem 1 Let r be a positive real number. Consider the $2^{\text {nd }}$ order, linear differential equation,

$$
y^{\prime \prime}-\left(r+\frac{3}{t}\right) y^{\prime}+\left(\frac{2 r}{t}+\frac{3}{t^{2}}\right) y=0,
$$

where $y(t)$ is a function on $(0, \infty)$. One solution of this equation is $y_{1}(t)=t e^{r t}$. Use Wronskian reduction of order to find a second solution $y_{2}(t)$.
Solution For the Wronskian $W\left[y_{1}, y_{2}\right](t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)$, differentiating gives,

$$
W^{\prime}=-a(t) W=\left(r+\frac{3}{t}\right) W .
$$

This is a separable equation whose solution is,

$$
\ln (W)=r t+3 \ln (t)+C,
$$

in other words,

$$
W(t)=A t^{3} e^{r t} .
$$

Without loss of generality, take $A=1$.
By definition $v=y_{2}(t)$ is a solution of the following $1^{\text {st }}$ order ODE,

$$
t e^{r t} v^{\prime}-(r t+1) e^{r t} v=t^{3} e^{r t} .
$$

Putting this in normal form,

$$
v^{\prime}+\left(-r-\frac{1}{t}\right) v=t^{2} .
$$

An integrating factor for this equation is,

$$
\begin{gathered}
u(t)=\exp \left[\int_{t_{0}}^{t}\left(-r-\frac{1}{s}\right) d s\right] \\
=\exp [-r t-\ln (t)+B] \\
=C t^{-1} e^{-r t},
\end{gathered}
$$

where C is a constant. Set $C=1$.
The integrating factor reduces the ODE to,

$$
\left[t^{-1} e^{-r t} v\right]^{\prime}=t e^{-r t} .
$$

Integrating by parts, the antiderivative of $t e^{-r t}$ is,

$$
\int t e^{-r t} d t=-\frac{1}{r^{2}}(r t+1) e^{-r t}+E .
$$

Hence,

$$
t^{-1} e^{-r t} v=-\frac{1}{r^{2}}(r t+1) e^{-r t}+E .
$$

One solution is,

$$
v(t)=-\frac{1}{r^{2}} t(r t+1) .
$$

Of course any multiple of this solution also leads to a basic solution set. Therefore a basic solution set of the ODE,

$$
y^{\prime \prime}-\left(r+\frac{3}{t}\right) y^{\prime}+\left(\frac{2 r}{t}+\frac{3}{t^{2}}\right) y=0,
$$

is the pair,

$$
y_{1}(t)=t e^{r t}, \quad y_{2}(t)=t(r t+1) .
$$

Problem 2 An undamped harmonic oscillator satisfies the ODE,

$$
y^{\prime \prime}+\omega^{2} y=0
$$

Let $y(t)$ be a solution of this ODE for $t<\tau$. At some time $\tau>0$, the oscillator is given an impulse of size $v>0$. In other words, if

$$
\left\{\begin{aligned}
\lim _{t \rightarrow \tau^{-}} y(t) & =y_{0}, \\
\lim _{t \rightarrow \tau^{-}} y^{\prime}(t) & =v_{0}
\end{aligned}\right.
$$

then for $t>\tau, y(t)$ is a solution of the IVP,

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\omega^{2} y=0 \\
y(\tau)=y_{0} \\
y^{\prime}(\tau)=v_{0}+v
\end{array}\right.
$$

(a) Write $y(t)$ in normal form $A \cos (\omega t-\phi)$ for $t<\tau$, and in normal form $y(t)=B \cos (\omega t-\psi)$ for $t>\tau$. Find an equation expressing B^{2} in terms of A^{2}, v_{0} and v.

Solution For a function $z(t)$ in the form $C \cos (\omega t-\theta)$, the derivative is $z^{\prime}(t)=-\omega C \sin (\omega t-\theta)$. In particular,

$$
(\omega z)^{2}+\left(z^{\prime}\right)^{2}=\omega^{2} C^{2} \cos ^{2}(\omega t-\theta)+\omega^{2} C^{2} \sin ^{2}(\omega t-\theta)=\omega^{2} C^{2} .
$$

In particular,

$$
\begin{gathered}
\omega^{2} B^{2}=(\omega y(\tau))^{2}+\left(y^{\prime}(\tau)\right)^{2} \\
=\left(\omega y_{0}\right)^{2}+\left(v_{0}+v\right)^{2}=\left(\omega y_{0}\right)^{2}+v_{0}^{2}+2 v_{0} v+v^{2} \\
=\omega^{2} A^{2}+2 v_{0} v+v^{2} .
\end{gathered}
$$

This gives the formula,

$$
B^{2}=A^{2}+2 \frac{1}{\omega^{2}} v_{0} v+\frac{1}{\omega^{2}} v^{2} .
$$

(b) If the goal of the impulse is to maximize the amplitude B, at what moment τ in the cycle of the oscillator should the impulse be applied? If the goal is minimize the amplitude B, at what moment τ should the impulse be applied?
Solution Maximizing B is the same as maximizing B^{2}. In the equation above, A^{2}, ω and v are the same for all values of τ. The only quantity that varies is v_{0}. To maximize B^{2}, the impulse should be applied when v_{0} is as large as possible, at the moment when $y_{0}=0$ and $y^{\prime}(t)>0$. In other words, when

$$
\omega \tau-\phi=(2 n-1 / 2) \pi, \quad \tau=\frac{1}{\omega}(\phi+(2 n-1 / 2) \pi) .
$$

Similarly, to minimize B, the impulse should be applied when v_{0} is as negative as possible, at the moment when $y_{0}=0$ and $y^{\prime}(t)<0$. In other words, when

$$
\omega \tau-\phi=(2 n+1 / 2) \pi, \quad \tau=\frac{1}{\omega}(\phi+(2 n+1 / 2) \pi) .
$$

Problem 3 Consider the following constant coefficient linear ODE,

$$
y^{\prime \prime \prime}+y=0
$$

(a) Find the characteristic polynomial and find all real and complex roots.

Solution The characteristic polynomial is,

$$
p(z)=z^{3}+1 .
$$

One evident root is $z=-1$. Factoring this out gives,

$$
z^{3}+1=(z+1)\left(z^{2}-z+1\right) .
$$

By the quadratic formula, the two roots of $z^{2}-z+1$ are the complex conjugates,

$$
\lambda_{ \pm}=1 / 2 \pm i \sqrt{3} / 2
$$

(b) Find the general real-valued solution of the ODE.

Solution Associated to the root -1 is the real-valued solution e^{-t}. Associated to the complex conjugates $\lambda_{ \pm}$are the two real solutions,

$$
e^{t / 2} \cos (\sqrt{3} t / 2), \quad e^{t / 2} \sin (\sqrt{3} t / 2)
$$

Therefore the general real-valued solution is,

$$
y_{g}(t)=C_{1} e^{-t}+C_{2} e^{t / 2} \cos (\sqrt{3} t / 2)+C_{3} e^{t / 2} \sin (\sqrt{3} t / 2) .
$$

(c) Find a particular solution of the driven ODE,

$$
y^{\prime \prime \prime}+y=\cos (\sqrt{3} t / 2)
$$

Solution A particular solution is the real part of the complex-valued solution of the driven complex ODE,

$$
\widetilde{y}^{\prime \prime \prime}+\widetilde{y}=e^{i \sqrt{3} t / 2}
$$

Because $\frac{i \sqrt{3}}{2}$ is not a root of the characteristic polynomial, we guess the solution is of the form,

$$
\widetilde{y}=A e^{i \sqrt{3} t / 2}
$$

Substituting this into the ODE gives,

$$
(i \sqrt{3} / 2)^{3} A e^{i \sqrt{3} t / 2}+A e^{i \sqrt{3} t / 2}=e^{i \sqrt{3} t / 2}
$$

Simplifying gives,

$$
A(1-3 \sqrt{3} i / 8)=1,
$$

i.e.,

$$
\frac{1}{8} A(8-3 \sqrt{3} i)=1
$$

Multiplying both sides by the complex conjugate $8+3 \sqrt{3} i$ gives,

$$
\frac{1}{8} A(64-27)=(8+3 \sqrt{3} i)
$$

i.e.

$$
A=\frac{8}{37}(8+3 \sqrt{3} i) .
$$

So the real part of $\widetilde{y}(t)$ is,

$$
y_{d}(t)=\frac{8}{37}(8 \cos (\sqrt{3} t / 2)-3 \sqrt{3} \sin (\sqrt{3} t / 2)) .
$$

Problem 4 The linear ODE,

$$
y^{\prime \prime}+(t-3 / t) y^{\prime}-2 y=0
$$

has a basic solution pair $y_{1}(t)=e^{-t^{2} / 2}, y_{2}(t)=t^{2}-2$.
(a) Find the Wronskian $W\left[y_{1}, y_{2}\right](t)$.

Solution Computing the derivatives,

$$
\begin{array}{llll}
y_{1}(t) & = & e^{-t^{2} / 2}, \quad y_{2}(t) & = \\
t^{2}-2 \\
y_{1}^{\prime}(t) & = & -t e^{-t^{2} / 2}, \quad y_{2}^{\prime}(t) & =
\end{array}
$$

So the Wronskian is,

$$
2 t e^{-t^{2} / 2}-(-t)\left(t^{2}-2\right) e^{-t^{2} / 2}=t^{3} e^{-t^{2} / 2}
$$

(b) Use variation of parameters to find a particular solution of the driven ODE,

$$
y^{\prime \prime}+(t-3 / t) y^{\prime}-2 y=t^{4}
$$

Solution By variation of parameters, a particular solution of $L y=f(t)$ is,

$$
y_{d}(t)=\int_{t_{0}}^{t} K(t, s) f(s) d s
$$

where,

$$
K(t, s)=\left(y_{1}(s) y_{2}(t)-y_{1}(t) y_{2}(s)\right) / W\left[y_{1}, y_{2}\right](s)
$$

By (a), $W(s)=s^{3} e^{-s^{2} / 2}$. Therefore,

$$
K(t, s)=\left(e^{-s^{2} / 2}\left(t^{2}-2\right)-e^{-t^{2} / 2}\left(s^{2}-2\right)\right) /\left(s^{3} e^{-s^{2} / 2}\right)
$$

Simplifying, this is,

$$
K(t, s)=\frac{1}{s^{3}}\left(t^{2}-2\right)-e^{-t^{2} / 2}\left(\frac{s^{2}-2}{s^{3}}\right) e^{s^{2} / 2}
$$

Multiplying by s^{4} yields,

$$
K(t, s) s^{4}=\left(t^{2}-2\right) s-e^{-t^{2} / 2}\left(s^{3}-2 s\right) e^{s^{2} / 2}
$$

The antiderivative of the first term is,

$$
\int_{t_{0}}^{t}\left(t^{2}-2\right) s d s=\frac{1}{2}\left(t^{2}-t_{0}^{2}\right)\left(t^{2}-2\right)
$$

To antidifferentiate the second term, substitute $u=s^{2} / 2, d u=s d s$ to get,

$$
\int_{t_{0}^{2} / 2}^{t^{2} / 2}-e^{-t^{2} / 2}(u-2) e^{u} d u
$$

Integrating by parts, this is,

$$
\begin{gathered}
\int_{t_{0}^{2} / 2}^{t^{2} / 2}-e^{-t^{2} / 2}(u-2) e^{u} d u= \\
-e^{-t^{2} / 2}\left(\left.(u-3) e^{u}\right|_{t_{0}^{2} / 2} ^{t^{2} / 2}=\right. \\
-e^{-t^{2} / 2}\left(\frac{1}{2}\left(t^{2}-6\right) e^{t^{2} / 2}-\frac{1}{2}\left(t_{0}^{2}-6\right) e^{t_{0}^{2} / 2}\right)= \\
-\frac{1}{2}\left(t^{2}-6\right)+\frac{1}{2}\left(t_{0}^{2}-6\right) e^{t_{0}^{2} / 2} e^{-t^{2} / 2}
\end{gathered}
$$

Putting the pieces together and plugging in $t_{0}=0$ gives,

$$
y_{d}(t)=\frac{1}{2}\left(t^{4}-3 t^{2}+6\right)-3 e^{-t^{2} / 2}
$$

It is straightforward to check this is a solution.
Problem 5 Recall that $\mathrm{PC}_{\mathbb{R}}(0,1]$ is the set of all piecewise continuous real-valued functions on the interval $(0,1]$. The inner product on this set is,

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

Define $f_{0}(t)=1$. For each integer $n \geq 1$, define $f_{n}(t)$ to be the piecewise continuous function whose value on $\left(0, \frac{1}{2^{n}}\right]$ is -1 , whose value on $\left(\frac{1}{2^{n}}, \frac{2}{2^{n}}\right]$ is +1 , whose value on $\left(\frac{2}{2^{n}}, \frac{3}{2^{n}}\right]$ is -1 , whose value on $\left(\frac{3}{2^{n}}, \frac{4}{2^{n}}\right]$ is +1 , etc. In other words,

$$
f_{n}(t)= \begin{cases}-1, \quad \frac{2 k-2}{2^{n}}<t \leq \frac{2 k-2}{2^{n}} & \text { for } k=1, \ldots, 2^{n-1} \\ +1, \quad \frac{2 k-1}{2^{n}}<t \leq \frac{2 k}{2^{n}} & \text { for } k=1, \ldots, 2^{n-1}\end{cases}
$$

(a) Compute the integrals $\left\langle f_{m}, f_{n}\right\rangle$ and use this to prove that $\left(f_{0}, f_{1}, \ldots\right)$ is an orthonormal sequence. (Hint: If $n>m$, consider the integral of f_{n} over one of the subintervals $\left(\frac{a}{2^{m}}, \frac{a+1}{2^{m}}\right]$. What fraction of the time is f_{n} positive and what fraction of the time is it negative?)
Solution First of all, for every $n,\left(f_{n}(t)\right)^{2}$ is the constant function 1 . Therefore $\left\langle f_{n}, f_{n}\right\rangle=1$. Suppose that $n>m$. Then the integral $\left\langle f_{n}, f_{m}\right\rangle$ is the sum over all integers $a=0, \ldots, 2^{m}-1$ of the integral,

$$
\int_{a / 2^{m}}^{(a+1) / 2^{m}} \pm f_{n}(t) d t
$$

Of course the interval $\left(\frac{a}{2^{m}}, \frac{a+1}{2^{m}}\right]$ is a union of 2^{n-m} intervals $\left(\frac{b}{2^{n}}, \frac{b+1}{2^{n}}\right]$. On half of these intervals, $f_{n}(t)$ has the constant value -1 . On the other half, $f_{n}(t)$ has the constant value +1 . Therefore the net integral of $f_{n}(t)$ over $\left(\frac{a}{2^{m}}, \frac{a+1}{2^{m}}\right]$ is 0 . Since this holds for each a,

$$
\left\langle f_{n}, f_{m}\right\rangle=0
$$

Therefore the sequence $\left(f_{0}, f_{1}, \ldots\right)$ is an orthonormal sequence.
(b) Compute the generalized Fourier coefficient,

$$
\left\langle t, f_{n}(t)\right\rangle=\int_{0}^{1} t f_{n}(t) d t
$$

Prove it equals $\frac{1}{2^{n+1}}$. This gives the generalized Fourier series,

$$
t=\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} f_{n}(t)
$$

Solution Of course for $n=0,\left\langle t, f_{0}(t)\right\rangle$ is just the integral of t, which is $\frac{1}{2}$. Suppose that $n>0$. By definition,

$$
\left\langle t, f_{n}(t)\right\rangle=\sum_{k=1}^{2^{n-1}}\left(\int_{(2 k-2) / 2^{n}}^{(2 k-1) / 2^{n}} t(-1) d t+\int_{(2 k-1) / 2^{n}}^{2 k / 2^{n}} t(+1) d t\right)
$$

Integrating, this is,

$$
\sum_{k=1}^{2^{n-1}}\left(-\left(t^{2} /\left.2\right|_{(2 k-2) / 2^{n}} ^{(2 k-1) / 2^{n}}+\left(t^{2} /\left.2\right|_{(2 k-1) / 2^{n}} ^{2 k / 2^{n}}\right)\right.\right.
$$

The term in parentheses simplifies to,

$$
\begin{gathered}
-\frac{1}{2}\left((2 k-1)^{2} / 2^{2 n}-(2 k-2)^{2} / 2^{2 n}\right)+\frac{1}{2}\left((2 k)^{2} / 2^{2 n}-(2 k-1)^{2} / 2^{2 n}\right)= \\
\frac{1}{2^{2 n+1}}\left((2 k)^{2}-2(2 k-1)^{2}+(2 k-2)^{2}\right)= \\
\frac{1}{2^{2 n+1}}\left(4 k^{2}-2\left(4 k^{2}-4 k+1\right)+\left(4 k^{2}-8 k+4\right)\right)= \\
\frac{1}{2^{2 n+1}}\left(4 k^{2}-8 k^{2}+8 k-2+4 k^{2}-8 k+4\right)= \\
\frac{1}{2^{2 n}} .
\end{gathered}
$$

Summing over all k gives $2^{n-1} \times\left(1 / 2^{2 n}\right)=1 / 2^{n+1}$. Therefore the generalized Fourier coefficient is,

$$
\left\langle t, f_{n}(t)\right\rangle=\frac{1}{2^{n+1}}
$$

This gives the generalized Fourier series,

$$
t=\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} f_{n}(t)
$$

(c) Rewrite the series above as,

$$
t=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{1+f_{n}(t)}{2}
$$

What is the relationship of this equation to the binary expansion of the real number t ?
Solution We can rewrite the equation because,

$$
\frac{1}{2} f_{0}=\frac{1}{2}=\sum_{n=1}^{\infty} \frac{1}{2^{n+1}}
$$

Now $1+f_{n}(t)$ equals 0 iff the $n^{\text {th }}$ digit in the binary expansion of t equals 0 . And $1+f_{n}(t)$ equals 2 iff the $n^{\text {th }}$ digit in the binary expansion of t equals 1 . Therefore $\left(1+f_{n}(t)\right) / 2$ is precisely the $n^{\text {th }}$ digit in the binary expansion of t. Therefore the formula above precisely says that t is equal to the series arising from the binary expansion of t.

