18.034 PRACTICE EXAM 2, SPRING 2004

Problem 1 Let r be a positive real number. Consider the $2^{\text {nd }}$ order, linear differential equation,

$$
y^{\prime \prime}-\left(r+\frac{3}{t}\right) y^{\prime}+\left(\frac{2 r}{t}+\frac{3}{t^{2}}\right) y=0,
$$

where $y(t)$ is a function on $(0, \infty)$. One solution of this equation is $y_{1}(t)=t e^{r t}$. Use Wronskian reduction of order to find a second solution $y_{2}(t)$.
Problem 2 An undamped harmonic oscillator satisfies the ODE,

$$
y^{\prime \prime}+\omega^{2} y=0
$$

Let $y(t)$ be a solution of this ODE for $t<\tau$. At some time $\tau>0$, the oscillator is given an impulse of size $v>0$. In other words, if

$$
\left\{\begin{aligned}
\lim _{t \rightarrow \tau^{-}} y(t) & =y_{0}, \\
\lim _{t \rightarrow \tau^{-}} y^{\prime}(t) & =v_{0}
\end{aligned}\right.
$$

then for $t>\tau, y(t)$ is a solution of the IVP,

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\omega^{2} y=0 \\
y(\tau)=y_{0} \\
y^{\prime}(\tau)=v_{0}+v
\end{array}\right.
$$

(a) Write $y(t)$ in normal form $A \cos (\omega t-\phi)$ for $t<\tau$, and in normal form $y(t)=B \cos (\omega t-\psi)$ for $t>\tau$. Find an equation expressing B^{2} in terms of A^{2}, v_{0} and v.
(b) If the goal of the impulse is to maximize the amplitude B, at what moment τ in the cycle of the oscillator should the impulse be applied? If the goal is minimize the amplitude B, at what moment τ should the impulse be applied?
Problem 3 Consider the following constant coefficient linear ODE,

$$
y^{\prime \prime \prime}+y=0 .
$$

(a) Find the characteristic polynomial and find all real and complex roots.
(b) Find the general real-valued solution of the ODE.
(c) Find a particular solution of the driven ODE,

$$
y^{\prime \prime \prime}+y=\cos (\sqrt{3} t / 2) .
$$

Problem 4 The linear ODE,

$$
y^{\prime \prime}+(t-3 / t) y^{\prime}-2 y=0,
$$

has a basic solution pair $y_{1}(t)=e^{-\frac{t^{2}}{2}}, y_{2}(t)=t^{2}-2$.
(a) Find the Wronskian $W\left[y_{1}, y_{2}\right](t)$.
(b) Use variation of parameters to find a particular solution of the driven ODE,

$$
y^{\prime \prime}+(t-3 / t) y^{\prime}-2 y=t^{4} .
$$

Date: Spring 2004.

Problem 5 Recall that $\mathrm{PC}_{\mathbb{R}}(0,1]$ is the set of all piecewise continuous real-valued functions on the interval $(0,1]$. The inner product on this set is,

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

Define $f_{0}(t)=1$. For each integer $n \geq 1$, define $f_{n}(t)$ to be the piecewise continuous function whose value on $\left(0, \frac{1}{2^{n}}\right]$ is -1 , whose value on $\left(\frac{1}{2^{n}}, \frac{2}{2^{n}}\right]$ is +1 , whose value on $\left(\frac{2}{2^{n}}, \frac{3}{2^{n}}\right]$ is -1 , whose value on $\left(\frac{3}{2^{n}}, \frac{4}{2^{n}}\right]$ is +1 , etc. In other words,

$$
f_{n}(t)= \begin{cases}-1, \quad \frac{2 k-2}{2^{n}}<t \leq \frac{2 k-2}{2^{n}} & \text { for } k=1, \ldots, 2^{n-1} \\ +1, \quad \frac{2 k-1}{2^{n}}<t \leq \frac{2 k}{2^{n}} & \text { for } k=1, \ldots, 2^{n-1}\end{cases}
$$

(a) Compute the integrals $\left\langle f_{m}, f_{n}\right\rangle$ and use this to prove that $\left(f_{0}, f_{1}, \ldots\right)$ is an orthonormal sequence. (Hint: If $n>m$, consider the integral of f_{n} over one of the subintervals $\left(\frac{a}{2^{m}}, \frac{a+1}{2^{m}}\right]$. What fraction of the time is f_{n} positive and what fraction of the time is it negative?)
(b) Compute the generalized Fourier coefficient,

$$
\left\langle t, f_{n}(t)\right\rangle=\int_{0}^{1} t f_{n}(t) d t
$$

Prove it equals $\frac{1}{2^{n+1}}$. This gives the generalized Fourier series,

$$
t=\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} f_{n}(t)
$$

(c) Rewrite the series above as,

$$
t=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{1+f_{n}(t)}{2} .
$$

What is the relationship of this equation to the binary expansion of the real number t ?

