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18.034 SOLUTIONS TO PROBLEM SET 7 

Due date: Friday, April 16 in lecture. Late work will be accepted only with a medical note or for 
another Instituteapproved reason. You are strongly encouraged to work with others, but the final 
writeup should be entirely your own and based on your own understanding. 

Each of the following problems is from the textbook. The point value of the problem is next to the 
problem. 

(1)(5 points) p. 439, Problem 6 

Solution: To answer all such questions, the simplest method is to apply Gaussian elimination to 
the augmented matrix, ⎡ ⎤ 

1 −1 0 1 0 0 ⎦0 1 0 
1 3 −4 

A1 = ⎣	−1 3 −2 
0 0 1 

Taking R� = R2 + R1, R
� = R3 − R1, i.e., subtracting the first row from the second row and 2 3 

adding the first row to the third row, gives, ⎡ ⎤ 
1 −1 0 1 0 0 ⎦1 1 0 
0 4 −4 

A2 = ⎣	 0 2 −2 
−1 0 1 

Next, taking R� = (1/2)R3, R
� = R3 − 2R2,2 3 ⎡ 

1 −1 0 
A3 = ⎣	 0 1 −1 

0 0 0 

Finally, R� = R1 + R2,1	 ⎡ 
1 0 −1 

A4 = ⎣	 0 1 −1 
0 0 0 

⎤ 
1 0 0 
1 1 ⎦02 2 

−3 −2 1 

⎤
3 1 02 2 
1 1 ⎦02 2 

−3 −2 1 

Define A4 to be the matrix formed by the first 3 columns of �A4. First of all, the nullspace of A equals 
the nullspace of A4. Visibly, the nullspace of A4 is spanned by [1, 1, 1]T . Therefore the nullspace 
of A is spanned by [1, 1, 1]T . Also the column space of A4 is spanned by the same columns as the 
column space of A, i.e., the first 2 columns. So the column space of A is spanned by [1, −1, 1]T and 
[−1, 3, 3]T . 

(a) Therefore Ax = [1, −1, 1]T does have a solution, and the general solution is, ⎡ ⎤ ⎡ ⎤ 
1 1 

x = ⎣ 0 ⎦ + C ⎣ 1 ⎦ , C ∈ R. 
0 1 

(b) The general solution of Ax = 0 is, ⎡ ⎤ 
1 

x = C ⎣ 1 ⎦ , C ∈ R. 
1 

1 



(c) The system Ax = y has a solution iff y is in the column space, i.e., iff ⎡ ⎤ ⎡ ⎤ 
1 −1 ⎦y = C1 ⎣ −1 ⎦ + C2 ⎣ 3 , 
1 3 

iff −3y1 − 2y2 + y3 = 0. 

(2)(5 points) p. 439, Problem 12 

Solution: We use cofactor expansion along the third row, ⎡ ⎤ 
5 7 2 

det(A) = −2det(B1), B1 = ⎣ 4 1 1 ⎦ . 
1 3 4 

To compute the determinant of this matrix, we use row operations, keeping track of how the deter
minant changes. First take R3 = R1, R1 = R3, ⎡ ⎤ 

1 3 4 
det(B1) = −det(B2), B2 = ⎣ 4 1 1 ⎦ . 

5 7 2 

Next, R� = R2 − 4R1, R� = R3 − 5R1,2	 3 ⎡	 ⎤ 
1 3 4 ⎦det(B2) = det(B3), B3 = ⎣	 0 −11 −15 . 
0 −8 −18 

Next, R� = R2 −R3,2	 ⎡ ⎤ 
1 3 4 ⎦det(B3) = det(B4), B4 = ⎣	 0 −3 3 . 
0 −8 −18 

Next, R� = R3 − 2R2,3	 ⎡ ⎤ 
1 3 4 ⎦det(B4) = det(B5), B5 = ⎣	 0 −3 3 . 
0 −2 −24 

Next, R2 = R� ⎡ ⎤ 
1 3 4 

det(B5) = det(B6), B6 = ⎣ 0 1 51 ⎦ . 
0 −2 −24 

Finally, R3 = R3 + 2R2, ⎡ ⎤ 
1 3 4 

det(B6) = det(B7), B7 = ⎣ 0 1 51 ⎦ . 
0 0 78 

2 − 2R3, 

Because this is an upper triangular matrix, det(B7) = 1 1 78 = 78. Therefore det(B2) = = · ·	 · · · 
det(B7) = 78. So det(B1) = −78. So, 

det(A) = (−2)(−78) = 156. 

(3)(5 points) p. 439, Problem 16 

Solution: As shown above, the nullspace has dimension 1. And the column space has dimension 2. 
Therefore R(L) + N(L) = 2 + 1, which is 3 as required. 

(4)(5 points) p. 362, Problem 13 
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Solution: The characteristic polynomial is the determinant of the matrix, ⎡ ⎤ 
λ + 1 −36 −100 

λI3×3 −A = ⎣ 0 λ + 1 −27 .⎦ 
0 0 λ− 5 

Because this is an upper triangular matrix, the determinant is simply (λ + 1)(λ + 1)(λ − 5) = 
(λ + 1)2(λ− 5). Therefore λ1 = −1 is an eigenvalue with multiplicity 2, and λ2 = 5 is an eigenvalue 
with multiplicity 1. 

For λ1 = −1, the eigenspace is the nullspace of the matrix, ⎡ ⎤ 

−I −A = ⎣ 
0 −36 
0 0 
0 0 

−100 
−27 
−6 

⎦ . 

Visibly, the only nullvector is, ⎡ ⎤ 
1 

v1 = ⎣ 0 ⎦ , 
0 

(since the last 2 columns are linearly independent, the rank nullity theorem says the nullspace has 
dimension 1). Since the multiplicity is 2 but the eigenspace has dimension 1, the eigenspace for 
λ = −1 is deficient. 

For λ2 = 5, the eigenspace is the nullspace of the matrix, ⎡ ⎤ 
6 −36 −100 

5I −A = ⎣ 0 6 −27 .⎦ 
0 0 0 

Notice that 6[−100,−27]T + 27[−36, 6]T + 262[6, 0]T = [0, 0]T . Therefore the eigenspace for λ = −5 
is spanned by, ⎡ ⎤ 

262 
v2 = ⎣ 27 ⎦ . 

6 

(5)(5 points) p. 362, Problem 18 

This can be proved rigorously by induction, but essentially it is obvious by inspection. 

(6)(5 points) p. 362, Problem 19 

Solution: Let v be an eigenvector for λ, i.e. Av = λv. Then, by induction, for every integer k ≥ 1, 
Ak(v) = λkv. Therefore v is an eigenvector for Ak with eigenvalue λk. This proves the first part. 

The second part is a bit vague – it is not stated over what field we are working or which root of 
µ we are taking. Suppose that λk is an eigenvalue of Ak . It is not necessarily true that λ is an 
eigenvalue of A. For instance, let A = In×n. Then (−1)2 = 1 is an eigenvalue of A2. But −1 is not 
an eigenvalue of A. 

Another reasonable interpretation of this part of the problem is this: For every eigenvalue µ of 
Ak, does there exist an eigenvalue λ of A such that µ = λk? The answer to this is “yes”, at least 
over C. Let λ1, . . . , λr be the distinct complex eigenvalues of A. Then the generalized eigenspace 
V gen, . . . , V gen give a direct sum decomposition of V . Denote by Ai the restriction of A to V gen .λ1 λr λi 

Then Ai = λiI + N , where N is a nilpotent matrix. Therefore, Ak is λkI + BN where B is the i i 
matrix, 

B = kλk−1I + k(k − 1)/2λk−2N + + kλiN
k−2 + Nk−1 .i i · · ·
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In particular, B commutes with N . So if N e = 0, then (BN)e = BeN e = Be0 = 0. It follows that 
(Ai

k − λi
kI)e = 0. Therefore V gen is contained in the generalized eigenspace of Ak for the eigenvalue λi 

λi
k. Because every vector in V can be written as a sum of vectors in V gen , . . . , V gen, the generalized λ1 λr 

eigenspaces for λk 
1, . . . , λ

k
r already give a direct sum decomposition of V . By our basic theorem that 

all of the nontrivial generalized eigenspaces for Ak give a direct sum decomposition of V , it follows 
that the only eigenvalues of Ak are λk 

1, . . . , λ
k
r . Therefore every eigenvalue of Ak is the kth power of 

an eigenvalue of A. 

(7)(5 points) p. 362, Problem 21 

Solution: This follows immediately by expanding and comparing to Formula (12) on p. 357. 

(8)(5 points) p. 362, Problem 22 
Solution: Part (a) follows immediately by expanding and comparing to Formula (12). For Part 

(b), notice that the trance is −5. Since this is a negative real number, the sum of the real parts of 
the eigenvalues is negative. Therefore, at least one of the eigenvalues has a negative real part. 

(9)(5 points) p. 362, Problem 23 

Solution: The matrix A is nonsingular iff it has only the trivial nullvector. A nontrivial nullvector 
is the same thing as an eigenvector for the eigenvalue λ = 0. Therefore A is nonsingular iff 0 is not 
an eigenvalue of A. 

(10)(5 points) p. 363, Problem 25 

Solution: The trace is 4 and the determinant is 4. Therefore the characteristic polynomial is 
pA(λ) = λ2 − 4λ + 4 = (λ− 2)2. Therefore λ = 2 is an eigenvalue with multiplicity 2. Because the 
matrix is not diagonal, clearly the eigenspace is deficient. Choose a random vector, say � � 

1 
v2 = 0 . 

Then, � � � � � � 

v1 = (2I − A)v = −2 2 
−2 2 

1 
0 = −2 

−2 , 

is an eigenvector. Therefore a generalized eigenbasis consists of (v1, v2). With respect to this ordered 
basis, the matrix is, � � 

2 1 
0 2 . 
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