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18.034 PROBLEM SET 3 

Due date: Friday, March 5 in lecture. Late work will be accepted only with a medical note or for 
another Instituteapproved reason. You are strongly encouraged to work with others, but the final 
writeup should be entirely your own and based on your own understanding. 

Each of the following problems is from the textbook. The point value of the problem is next to the 
problem. In Problem 36 from p. 175, please give an accurate plot. If you choose to do this by hand, 
that is fine, but plot the whole interval [−2, 0] with a step size of 0.1. If you choose to use Matlab, 
there will be a handout online giving stepbystep instructions how to plot functions. 

(1)(5 points) p. 129, Problem 4 

Solution: First there is a preliminary estimate that is useful. Let � be a real number such that 
0 < � < 1. Define η = 1− �. If u ≤ η, then 1+u 2 ≥ �2 and 1/ 1+u 2 ≤ 1/�2. Applying the Mean | | | |

1
| |

Value Theorem to f(u) = log(1 + u)− u and then to f �(u) = 1+u − 1 yields, 
2 2u u−|

�2
| ≤ log(1 + u)− u ≤ |

�2
|

, if u < η. | | 

Because the exponential function is monotone, this gives the following estimate, 
2 21− exp(n u /�2) ≤ exp(0) − exp(n log(1 + u)− nu) ≤ 1− exp(−n u /�2), if |u| < η. | | | |

Simplifying this expression and multiplying both sides by enu gives the estimate, 
nu e nu(1 − e n|u|

2/�2) ≤ (1 + u)n − e ≤ e nu(1 − e−n|u|2/�2), if u < η. | | 

Now consider the Euler’s Method approximation for the linear, firstorder, constant coefficient IVP, 

y� = ay, 
y(t0) = y0 

with step size h. Consider only h such that |a|h < η. Denote yn = y(t0 + nh) for n any integer. 
Euler’s Method gives the following recursion relation, 

yn+1 = yn + hayn = (1 + ah)yn. 

The solution of this recursion relation is, 

yn = (1 + ah)n y0, 

and the piecewise linear Euler Solution is, 

yh(t) = (1 + ah)n y0(1 + ah(t − nh)), 

for t ∈ [t0 + nh, t0 + (n + 1)h]. The true solution is readily computed as 
a(t−t0)y�(t) = y0e . 

Let t be any real number, and let n be the largest integer such that t0 + nh ≤ t. Then, 

yh(t)− y�(t) yh(t)− yh(tn) + yh(tn)− y�(tn) + y�(tn)− y�(t)
nah a(t−t0)≤ (|y0||a|h(1 + ah)n) + |y0||(1 + ah)n − e
| �|

+ 
� 

a(tn−t
|
) 
|

. 

| �| ≤ |
| |y0||e − 1||e | 

� | 

The first and third terms clearly become arbitrarily small as h → 0 (so that also tn − t → 0). For 
the middle term, setting u = ah, the preliminary estimate gives, 

nah|y0|e nah(1 − e|n||a|
2h2/�2 y0 (1 + ah)n − e ≤ |y0|e nah(1 − e−|n||a|2h2/�2).) ≤ | |
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As h → 0, the quantity nh coverges to t − t0. But the quantity nh2 converges to 0. Therefore, as 
h → 0, both bounds converge to 0. By the Squeezing Lemma, the middle term converges to 0 as 
h → 0. Therefore, as h → 0, the Euler Solutions yh(t) converge to the true solution y�(t). 
(2)(5 points) p. 129, Problem 5 

Solution: Let [a, b] be an interval with b > a. Let n > 0 be an integer. For k = 0, . . . 2n, define 
tk = a+ b−a k. The subintervals [tk, tk+1] give a partition of [a, b] into 2n equallyspaced subintervals 2n 

of length b−a . The Simpson’s Rule approximation for this partition is, 2n � b 
� � � 

n−1f(t)dt ≈ b−a f(t0) + k=1 (4f(t2k−1) + 2f(t2k)) + 4f(t2n−1) + f(t2n) = a 6n 
b−a [f(t0) + 4f(t1) + 2f(t2) + 4f(t3) + 2f(t4) + + 2f(t2n−2) + 4f(t2n−1) + f(t2n)] .6n · · ·

Observe that for each k = 0, . . . , n− 1, Simpson’s Rule applied to the subinterval [t2k, t2k+2] broken 
into 2 equally spaced subintervals gives, 

t2k+2 

f(t)dt ≈ 
b− a

[f(t2k) + 4f(t2k+1) + f(t2k+2)] .6nt2k 

Forming the sum of each of these approximations for k = 0, . . . , n−1 gives the usual Simpson’s rule. 

Apply RK4 to the ODE, � 
y� = f(t), 
y(t0) = y0 

with [a, b] broken into n equal subintervals of length b−a , i.e. n 

[t0, t2], [t2, t4], . . . , [t2k, t2k+2], . . . , [t2n−2, t2n]. 

The claim is the RK4 approximation for y(b) equals the Simpson’s Rule approximation. By the 
last paragraph, the Simpson’s Rule approximation is the sum of the Simpson’s Rule approximation 
for each subinterval [t2k, t2k+2]. So it suffices to prove for each k = 0, . . . , n − 1, that the RK4 
approximation for yk+1 − yk equals the Simpson’s Rule approximation for [t2k, t2k+2] broken into 2 
equal subintervals. 

By definition, the RK4 approximation gives, 

yn+1 − yn = 
b− a

(f(t2n) + 2f(t2n+1) + 2f(t2n+1) + f(t2n+2)).6n 

Simplifying, this is precisely the Simpson’s Rule approximation, 
t2n+2 

f(t)dt ≈ 
b− a

(f(t2n) + 4f(t2n+1) + f(t2n+2)).6nt2n 

(3)(5 points) p. 168, Problem 16 

Solution: One solution is clearly the constant function y(t) = 0. By the uniqueness theorem, 
Theorem 3.1.1, this is the unique solution. 

(4)(5 points) p. 175, Problem 4 

Solution: The characteristic polynomial is r2 + r − 2. Every root that is a rational number is ± a 
fraction whose numerator is a divisor of the constant coefficient, and whose denominator is a divisor 
of the leading coefficient. In this case, ±1 or ±2. Plugging in, r = 1 and r = −2 are roots (this also 
follows from the quadratic formula). Therefore, by Theorem 3.2.1, the general solution is, 

tC1e
−2t + C2e . 
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9Solution: The characteristic polynomial of the normal form is r2 + 6r . By the same method as 
above, −3 is a repeated root of the characteristic polynomial. Therefore, by Theorem 3.2.1, the 
general solution is, 

C1e
−3t + C2te

−3t . 

(6)(5 points) p. 175, Problem 36 

Solution: The characteristic polynomial is r2 − 4r + 4. By the same method as above, 2 is a 
repeated root. Therefore, by Theorem 3.2.1, the general solution is, 

2tC1e 
2t + C2te . 

It is equivalent, but slightly more useful, to write this as, 
2(t+1)D1e

2(t+1) + D2(t + 1)e . 

The initial conditions give, � 
D1 = 2 
2D1 + D2 = 0 

So D1 = 2 and D2 = −4. The solution of the IVP is, 

y(t) = 2e2(t+1) − 4(t + 1)e2(t+1) 

= −2e2e2t − 4e2te2t . 

The graph of the solution is 

�

�
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(5)(5 points) p. 175, Problem 6 

given below.
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(7)(5 points) p. 175, Problem 44 

Solution: Of course Abel’s Theorem proves this. Most likely the exercise is asking for the formula 
for the Wronskian of each solution pair. In the first case, 

r1t r2ty1(t) = e , y2(t) = e
r2ty1(t) = r1e

r1t , y2(t) = r2e . 

So the Wronskian is, 
(r1+r2)tW [y1, y2](t) = (r2 − r1)e . 

Because r2 =� r1, the coefficient is nonzero. And the exponential function is always nonzero. So 
W [y1, y2](t) is always nonzero. 

In the second case, 
r1ty1(t) = e , y2(t) = ter1t 

r1ty1(t) = r1e
r1t , y2(t) = (r1t + 1)e . 

So the Wronskian is, 
2r1tW [y1, y2](t) = (r1t + 1)e 2r1t − r1te

2r1t = e . 

Because the exponential is always nonzero, W [y1, y2](t) is always nonzero. 

In the final case, 

y1(t) = eαt cos(βt), y2(t) = eαt sin(βt) 
y1(t) = αeαt cos(βt)− βeαt sin(βt), y2(t) = αeαt sin(βt) + βeαt cos(βt) 

So the Wronskian is, 

W [y1, y2](t) = e2αt(α sin(βt) cos(βt) + β cos(βt)2)− e2αt(α cos(βt) sin(βt)− β sin(βt)2) 
= βe2αt(cos(βt)2 + sin(βt)2) = βe2αt . 

By hypothesis, β =� 0. And the exponential is always nonzero. Therefore W [y1, y2](t) is always

nonzero.
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Solution: The characteristic polynomial is r2 − r − 2. The roots are −1 and 2. Therefore, by 
Theroem 3.2.1, the general solution is, 

2tC1e
−t + C2e . 

Therefore, two solutions are, 
2ty1(t) = e−t + e , 
2ty2(t) = e−t − e . 

The derivatives are, 
2ty1(t) = −e−t + 2e , 
2ty2(t) = −e−t − 2e . 

Therefore the Wronskian is, 
t tW [y1, y2](t) = −(e−2t + 3e t + 2e 4t)− (−e−2t + 3e − 2e 4t) = −6e . 

Because the exponential is always nonzero, W [y1, y2](t) is always nonzero. Therefore (y1, y2) is a 
basic solution pair (one of infinitely many!). 

(9)(10 points) p. 176, Problem 48 

Solution, (a): By Theorem 3.2.1, the general solution is, 

C1e 
αt cos(βt) + C2e 

αt sin(βt). 

Define A = C2 + C2
2 . Define φ to be the unique angle, −π < φ ≤ π such that tan(φ) = C2/C1.1 

Then, 
C1 = A cos(φ), 
C2 = A sin(φ). 

By the angle addition formulas, 

y(t) = C1e
αt cos(βt) + C2e

αt sin(βt) 
= Aeαt(cos(βt) cos(φ) + sin(βt) sin(φ)) 

= Aeαt cos(βt − φ). 

Of course every nonzero solution occurs for a unique A > 0 and a unique −π < φ ≤ π. On the other 
hand, it is straightforward to check for every real number A (positive, negative or zero) and every 
angle φ, Aeαt cos(βt − φ) is a solution. 

2π(b). Define the period to be T = β . Then for the general solution y(t) above and for every integer 
n, 

αnT y(t + nT ) = Aeα(t+nT ) cos(βt + 2nπ − φ) = e y(t). 
Similarly, for every integer n, 

α(n+1/2)T y(t).y(t + (n + 1/2)T ) = Aeα(t+(n+1/2)T ) cos(βt + 2nπ + π − φ) = −e 

Therefore if y1(t) and y2(t) are two particular solutions such that y1(t0) = y2(t0), then for every 
integer n, 

y1(t0 + nT ) = y2(t0 + nT ), y1(t0 + (n + 1/2)T ) = y2(t0 + (n + 1/2)T ). 
πTherefore the nodes are equally spaced at intervals of 1T = .2 β 

(8)(5 points) p. 175, Problem 46
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