18.034 SOLUTIONS TO PROBLEM SET 1

Due date: Friday, February 13 in lecture. Late work will be accepted only with a medical note or for another Institute-approved reason. You are strongly encouraged to work with others, but the final write-up should be entirely your own and based on your own understanding.

Problem 1(20 points) The logistic model for a fish population with harvesting (p. 17) leads to the following IVP:

$$
\left\{\begin{array}{l}
y^{\prime}=a y-c y^{2}-H, \\
y(0)=y_{0}
\end{array}\right.
$$

Here a and y_{0} are positive and c and H are nonnegative. The IVP is defined on the interval $(0, \infty)$. Also, the model is only valid as long as $y(t) \geq 0$: If at any instant t_{1} (greater than 0) $y\left(t_{1}\right)$ equals 0 , then the population is extinct, and the population will remain extinct for all $t \geq t_{1}$.
(a)(10 points) The equilibrium solutions are the solutions of the ODE (without the initial condition) for which $y^{\prime}(t)=0$ for all t. Find inequalities among a, c, and H that determine when there will be 2 equilibrium solutions, 1 equilibrium solution, or no equilibrium solutions.

Solution: The equilibrium solutions are the constants y such that $a y-c y^{2}-H=0$; the normal form is $-c y^{2}+a y-H=0$. The discriminant of this quadratic equation is $(a)^{2}-4(-c)(-H)=a^{2}-4 c H$. By the quadratic formula, the number of solutions is,

$$
\begin{cases}2, & \text { both } c \neq 0 \text { and } a^{2}-4 c H>0 \\ 1, & \text { either }\left(c \neq 0 \text { and } a^{2}-4 c H=0\right), \text { or } c=0 \\ 0, & a^{2}-4 c H<0 .\end{cases}
$$

(b)(10 points) Suppose that both a and c are positive. What is the maximum value of H for which there is an equilibrium solution? If H is larger than this value, what is the long-term behavior of any solution of the ODE?
Solution: By part (a), the maximum value of H is $H_{0}=\frac{a^{2}}{4 c}$. If $H>H_{0}$, then $y^{\prime}=a y-c y^{2}-H$ is negative for all values of y. Therefore the solution is everywhere decreasing.

Let's be more precise. Completing the square gives,

$$
a y-c y^{2}-H=-c\left(y-\frac{a}{2}\right)^{2}-\left(H-\frac{a^{2}}{4 c}\right) .
$$

Therefore, y^{\prime} is at most $-\left(H-\frac{a^{2}}{4 c}\right)$. Denote $z(t)=-\left(H-\frac{a^{2}}{4 c}\right) t+y_{0}$. Then $y^{\prime}-z^{\prime}$ is at most 0 , i.e., $y-z$ is nonincreasing. Also $y(0)-z(0)=0$. Therefore $y-z$ is nonpositive. So $y(t) \leq z(t)$. Therefore, the population becomes extinct at a time,

$$
t \leq \frac{4 c y_{0}}{4 c H-a^{2}}
$$

In fact this understates the truth - if you solve the separable differential equation exactly you will find there is a time $\tau(a, c, H)>0$ so that, independent of the initial value y_{0}, the population becomes extinct at a time $t \leq \tau$.

Problem 2(20 points) After a change of variables, the logistic equation with harvesting reduces to the following IVP (neglecting the extinction issue),

$$
\left\{\begin{array}{l}
x^{\prime}=-x^{2}+K, \\
x(0)=x_{0}>0
\end{array}\right.
$$

where $x=x(t)$ and where K is a constant. Suppose that $K=b^{2}$ for some $b>0$.
(a)(10 points) Formally rewrite the ODE as $f(x) d x=g(t) d t$ and integrate to find an exact solution. Express your answer in the form $b-x=h(t)$ for some expresion $h(t)$. Don't forget the special case $x_{0}=b$.

The ODE separates as,

$$
\int \frac{1}{b^{2}-x^{2}} d x=\int d t
$$

By partial fractions, this is the same as,

$$
\int\left(\frac{1}{b+x}+\frac{1}{b-x}\right) d x=\int 2 b d t
$$

Antidifferentiating,

$$
\ln \left(\frac{b+x}{b-x}\right)=2 b t+C
$$

Exponentiating,

$$
\frac{b+x}{b-x}=A^{\prime} e^{2 b t}
$$

or equivalently,

$$
\frac{b-x}{b+x}=A e^{-2 b t} .
$$

Rewriting $b+x=2 b-(b-x)$, and solving for $b-x$ gives,

$$
b-x(t)=\frac{2 b A e^{-2 b t}}{1+A e^{-2 b t}} .
$$

If $x_{0} \neq b$, define a new parameter $\alpha=\frac{b-x_{0}}{2 b}$. Then, solving in terms of α,

$$
(b-x(t))=\left\{\begin{array}{cc}
\left(b-x_{0}\right) e^{-2 b t}\left(\frac{1}{(1-\alpha)+\alpha e^{-2 b t}}\right), & x_{0} \neq b, \\
0, & x_{0}=b .
\end{array}\right.
$$

(b)(10 points) At some instant t_{1}, the value of $x\left(t_{1}\right)$ is very close to b. At that instant, the value of b in the differential equation is abruptly increased to a larger value b_{1}, and $x(t)$ gradually moves from the value b to the value b_{1}. Assuming $b_{1}-b$ is small compared to b, approximately how much time τ elapses before the difference $b_{1}-x\left(t_{1}+\tau\right)$ is one half of the initial difference $b_{1}-b$?

Solution: To simplify the problem, change coordinates in t so that $t_{1}=0$. Because the ODE is autonomous, this doesn't change the ODE (this will be the key to analyzing solutions of autonomous ODEs later on). Let $x_{0}=x\left(t_{1}\right)$. Then the solution of the IVP with b_{1} has the form,

$$
\left(b_{1}-x(t)\right)=\left(b_{1}-x_{0}\right) e^{-2 b_{1} t}\left(\frac{1}{\left(1-\alpha_{1}\right)+\alpha_{1} e^{-2 b_{1} t}}\right),
$$

where $\alpha_{1}=\frac{b-x_{0}}{2 b}$.

By hypothesis, $\alpha \approx 0$. Therefore the third factor in the solution is approximately 1 , and the solution of the IVP is approximately a decreasing exponential,

$$
\left(b_{1}-x(t)\right) \approx\left(b_{1}-x_{0}\right) e^{-2 b_{1} t}
$$

So the half-life is

$$
\tau \approx \frac{\ln (2)}{2 b_{1}}
$$

(c)(0 points - not to be written up/handed in). Critical ecosystem double whammy. Interpret your answer from (b). In particular, if the parameters a, c and H are near the critical value for extinction, does the system respond more quickly or less quickly to a decrease in H than if the parameters are far from the critical value?
Solution: This part was not to be handed in. The "solution" is only given for fun. The change of variables necessary to put the ODE in standard form is,

$$
\left\{\begin{array}{l}
x=c\left(y-\frac{a}{2}\right), \\
b=\sqrt{\frac{a^{2}}{4}-c H}
\end{array}\right.
$$

So if a, c and H are near the critical value, then b is near 0 . Decreasing H while holding a and c fixed increases b to a new value b_{1}. By (b), the half-life, or "reaction time", of the system to this change is proportional to

$$
\frac{1}{b_{1}} \approx \frac{1}{b} .
$$

So when b is small, the reaction time is large. This is the "double whammy": not only is the population close to the critical value of extinction (so a natural disaster, etc. could easily drive the population to extinction), but also a positive change in the environment (for instance, a government ban on fishing in a certain area) takes a long time to have a positive impact on the population.

Problem 3(5 points) Exercise 14, p. 49.
Solution: It is easier to spot the integrating factor without putting the ODE in normal form. For any ODE of the form,

$$
t y^{\prime}+a y=q(t), t \geq 0
$$

an integrating factor is clearly $u(t)=t^{a-1}$,

$$
\left(t^{a} y\right)^{\prime}=t^{a-1} q(t)
$$

In this case, antidifferentiating both sides,

$$
t^{2} y(t)=\int t^{3} d t=\frac{1}{4} t^{4}+C
$$

So the general solution is,

$$
y(t)=\frac{1}{4} t^{2}+\frac{C}{t^{2}}, \quad t \geq 0
$$

The qualitative behavior as $t \rightarrow 0^{+}$depends on the constant C. If $C>0$, then $y(t)$ diverges to $+\infty$ as $\frac{1}{t^{2}}$. If $C=0$, then $y(t)$ converges to 0 as t^{2}. If $C<0$, then $y(t)$ diverges to $-\infty$ as $\frac{-1}{t^{2}}$.

The qualitative behavior as $t \rightarrow \infty$ is the same for all solutions: the graph of $y(t)$ converges to the graph of the steady-state solution, $\frac{1}{4} t^{2}$. In particular it diverges to ∞ as t^{2}.

Problem 4(5 points) Exercise 20, p. 49.

As above, the integrating factor is easier to "eyeball" than to deduce formally. Multiplying both sides of the equation by $\sin t$ gives,

$$
(\sin t) y^{\prime}+(\cos t) y=2(\sin t)(\cos t), \quad y(3 \pi / 4)=2
$$

This is the same as,

$$
(\sin (t) y)^{\prime}=\left(\sin (t)^{2}\right)^{\prime}, \quad y(3 \pi / 4)=2
$$

Antidifferentiating, the general solution is,

$$
\sin (t) y=\sin (t)^{2}+C
$$

Solving the initial condition, $C=-3$. So the solution of the IVP is,

$$
y(t)=\sin (t)-3 \csc (t)
$$

Because $\sin (t) \rightarrow 0$ like t as $t \rightarrow 0^{+}, y(t)$ diverges to $-\infty$ like $\frac{-1}{t}$ as $t \rightarrow 0^{+}$.

