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18.034 SOLUTIONS TO PROBLEM SET 1 

Due date: Friday, February 13 in lecture. Late work will be accepted only with a medical note 
or for another Instituteapproved reason. You are strongly encouraged to work with others, but the 
final writeup should be entirely your own and based on your own understanding. 

Problem 1(20 points) The logistic model for a fish population with harvesting (p. 17) leads to 
the following IVP: � 

y� = ay − cy2 − H, 
y(0) = y0 

Here a and y0 are positive and c and H are nonnegative. The IVP is defined on the interval (0, ∞). 
Also, the model is only valid as long as y(t) ≥ 0: If at any instant t1 (greater than 0) y(t1) equals 
0, then the population is extinct, and the population will remain extinct for all t ≥ t1. 

(a)(10 points) The equilibrium solutions are the solutions of the ODE (without the initial condi
tion) for which y�(t) = 0 for all t. Find inequalities among a, c, and H that determine when there 
will be 2 equilibrium solutions, 1 equilibrium solution, or no equilibrium solutions. 

2Solution: The equilibrium solutions are the constants y such that ay−cy −H = 0; the normal form 
is −cy2 +ay − H = 0. The discriminant of this quadratic equation is (a)2 − 4(−c)(−H) = a2 − 4cH. 
By the quadratic formula, the number of solutions is, ⎧ ⎨ 2, both c = 0 and a2 − 4cH > 0 

1, either c = 0 and a2 − 4cH = 0 , or c = 0 ⎩ 
�

0, a2 − 4cH < 0. 

(b)(10 points) Suppose that both a and c are positive. What is the maximum value of H for 
which there is an equilibrium solution? If H is larger than this value, what is the longterm behavior 
of any solution of the ODE? 

2aSolution: By part (a), the maximum value of H is H0 = 4c . If H > H0, then y� = ay − cy2 − H is 
negative for all values of y. Therefore the solution is everywhere decreasing. 

Let’s be more precise. Completing the square gives, � �2 
� 

a2 
2 = 

a 
ay − cy − H −c y − H −

2 
− 

4c
. 

2a aTherefore, y� is at most −(H − 
2 
). Denote z(t) = −(H − 4c )t + y0. Then y� − z� is at most 0, 4c 

i.e., y − z is nonincreasing. Also y(0) − z(0) = 0. Therefore y − z is nonpositive. So y(t) ≤ z(t). 
Therefore, the population becomes extinct at a time, 

4cy0 
.

2
t ≤ 

4cH − a

In fact this understates the truth – if you solve the separable differential equation exactly you 
will find there is a time τ(a, c, H) > 0 so that, independent of the initial value y0, the population 
becomes extinct at a time t ≤ τ . 
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Problem 2(20 points) After a change of variables, the logistic equation with harvesting reduces 
to the following IVP (neglecting the extinction issue), 

x� = −x2 + K, 
x(0) = x0 > 0 

where x = x(t) and where K is a constant. Suppose that K = b2 for some b > 0. 

(a)(10 points) Formally rewrite the ODE as f(x)dx = g(t)dt and integrate to find an exact 
solution. Express your answer in the form b − x = h(t) for some expresion h(t). Don’t forget the 
special case x0 = b. 

The ODE separates as, � �
1 

dx = dt. 
b2 − x2 

By partial fractions, this is the same as, 

1 1 
+ dx = 2bdt. 

b + x b − x 

Antidifferentiating, � � 
b + x

ln = 2bt + C. 
b − x 

Exponentiating, 
b + x 2bt= A�e ,
b − x 

or equivalently, 
b − x 

= Ae−2bt . 
b + x 

Rewriting b + x = 2b − (b − x), and solving for b − x gives, 

2bAe−2bt 

b − x(t) =
1 + Ae−2bt 

. 

If x0 =� b, define a new parameter α = b−x0 
2b . Then, solving in terms of α, 

1 
(1−α)+αe−2bt , x0 = b,(b − x(t)) = (b − x0)e−2bt �

0, x0 = b. 

(b)(10 points) At some instant t1, the value of x(t1) is very close to b. At that instant, the value 
of b in the differential equation is abruptly increased to a larger value b1, and x(t) gradually moves 
from the value b to the value b1. Assuming b1 − b is small compared to b, approximately how much 
time τ elapses before the difference b1 − x(t1 + τ) is one half of the initial difference b1 − b? 

Solution: To simplify the problem, change coordinates in t so that t1 = 0. Because the ODE is 
autonomous, this doesn’t change the ODE (this will be the key to analyzing solutions of autonomous 
ODEs later on). Let x0 = x(t1). Then the solution of the IVP with b1 has the form, 

1
(b1 − x(t)) = (b1 − x0)e−2b1t 

(1 − α1) + α1e−2b1t 
, 

b−x0where α1 = 2b . 
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By hypothesis, α ≈ 0. Therefore the third factor in the solution is approximately 1, and the 
solution of the IVP is approximately a decreasing exponential, 

(b1 − x(t)) ≈ (b1 − x0)e−2b1t . 

So the halflife is 
ln(2) 

.τ ≈ 
2b1 

(c)(0 points – not to be written up/handed in). Critical ecosystem double whammy. Interpret 
your answer from (b). In particular, if the parameters a, c and H are near the critical value for 
extinction, does the system respond more quickly or less quickly to a decrease in H than if the 
parameters are far from the critical value? 

Solution: This part was not to be handed in. The “solution” is only given for fun. The change of 
variables necessary to put the ODE in standard form is, 

a x = c ,� y − 2 
b = a

4 

2 − cH. 

So if a, c and H are near the critical value, then b is near 0. Decreasing H while holding a and c 
fixed increases b to a new value b1. By (b), the halflife, or “reaction time”, of the system to this 
change is proportional to 

1 1 
. 

b1 
≈ 

b 

So when b is small, the reaction time is large. This is the “double whammy”: not only is the 
population close to the critical value of extinction (so a natural disaster, etc. could easily drive the 
population to extinction), but also a positive change in the environment (for instance, a government 
ban on fishing in a certain area) takes a long time to have a positive impact on the population. 

Problem 3(5 points) Exercise 14, p. 49. 

Solution: It is easier to spot the integrating factor without putting the ODE in normal form. For 
any ODE of the form, 

ty� + ay = q(t), t ≥ 0, 

an integrating factor is clearly u(t) = ta−1 , 

(ta y)� = ta−1 q(t). 

In this case, antidifferentiating both sides, 
12t y(t) = t3dt = t4 + C. 
4

So the general solution is, 
1 C 

y(t) = t2 + 
t2 

, t ≥ 0.
4

The qualitative behavior as t 0+ depends on the constant C. If C > 0, then y(t) diverges to →
+∞ as 1 . If C = 0, then y(t) converges to 0 as t2. If C < 0, then y(t) diverges to −∞ as −1 

t2 t2 
. 

The qualitative behavior as t → ∞ is the same for all solutions: the graph of y(t) converges to 
the graph of the steadystate solution, 1 t2. In particular it diverges to ∞ as t2 .4

Problem 4(5 points) Exercise 20, p. 49. 
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As above, the integrating factor is easier to “eyeball” than to deduce formally. Multiplying both 
sides of the equation by sin t gives, 

(sin t)y� + (cos t)y = 2(sin t)(cos t), y(3π/4) = 2. 

This is the same as, 
(sin(t)y)� = (sin(t)2)�, y(3π/4) = 2. 

Antidifferentiating, the general solution is, 

sin(t)y = sin(t)2 + C. 

Solving the initial condition, C = −3. So the solution of the IVP is, 

y(t) = sin(t)− 3 csc(t). 

0+ 
t → .Because sin(t)→ 0 like t as t → 0+ , y(t) diverges to −∞ like −1 as t 
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