18.03 Recitation 23, May 4, 2010

Linear phase portraits

The matrices I want you to study all have the form $A=\left[\begin{array}{cc}a & 2 \\ -2 & -1\end{array}\right]$.

1. Compute the trace, determinant, characteristic polynomial, and eigenvalues, in terms of a.
The trace is the sum of diagonals: $a-1$. The determinant is $-a+4$. the characteristic polynomial is $(a-\lambda)(-1-\lambda)+4=\lambda^{2}+(1-a) \lambda+4-a$. The eigenvalues are the roots of the characteristic polynomial, or $\frac{a-1 \pm \sqrt{a^{2}+2 a-15}}{2}$.
2. For these matrices, express the determinant as a function of the trace. Sketch the $(\operatorname{tr} A$, $\operatorname{det} A)$ plane, along with the critical parabola $\operatorname{det} A=(\operatorname{tr} A)^{2} / 4$, and plot the curve representing the relationship you found for this family of matrices. On this curve, plot the points corresponding to the following values of a : $a=$ $-6,-5,-2,1,2,3,4,5$.
$\operatorname{det} A=3-\operatorname{tr} A$. The points are: $(-7,10),(-6,9),(-3,6),(0,3),(1,2),(2,1),(3,0)$, and $(4,-1)$. The line intersects the parabola at $(-6,9)$ and $(2,1)$, i.e., where $a=-5$ and $a=3$, respectively.
3. Make a table showing for each a in this list (1) the eigenvalues; (2) information about the phase portrait derived from the eigenvalues (saddle, node, spiral) and the stability type (stable if all real parts are negative; unstable if at least one real part is positive; undesignated if neither); (3) further information beyond what the eigenvalues alone tell you: if a spiral, the direction (clockwise or counterclockwise) of motion; if the eigenvalues are repeated, whether the matrix is defective or complete.

a	eigenvalues	info	more info
-6	$-5,-2$	stable node	
-5	-3	defective stable node	
-2	$\frac{-3 \pm \sqrt{-15}}{2}$	stable spiral	clockwise
1	$\pm \sqrt{-3}$	center	clockwise
2	$\frac{1 \pm \sqrt{-7}}{2}$	unstable spiral	clockwise
3	1	defective unstable node	
4	0,3	unstable comb	
5	$2 \pm \sqrt{5}$	saddle	

The defective nodes are defective, because $A-\lambda I$ is nonzero.
4. Make sure you know how to find the general solution to $\dot{\mathbf{u}}=A \mathbf{u}$ for each of these cases. Special attention is required in the defective node case.

MIT OpenCourseWare
http://ocw.mit.edu
18.03 Differential Equationsㄱ ㄱ

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

