18.03 Recitation 23, May 4, 2010

Linear phase portraits

The matrices I want you to study all have the form $A = \begin{bmatrix} a & 2 \\ -2 & -1 \end{bmatrix}$.

1. Compute the trace, determinant, characteristic polynomial, and eigenvalues, in terms of a.

The trace is the sum of diagonals: a-1. The determinant is -a+4. the characteristic polynomial is $(a - \lambda)(-1 - \lambda) + 4 = \lambda^2 + (1 - a)\lambda + 4 - a$. The eigenvalues are the roots of the characteristic polynomial, or $\frac{a-1\pm\sqrt{a^2+2a-15}}{2}$.

2. For these matrices, express the determinant as a function of the trace. Sketch the (tr A, det A) plane, along with the critical parabola det $A = (\text{tr } A)^2/4$, and plot the curve representing the relationship you found for this family of matrices. On this curve, plot the points corresponding to the following values of a: a = -6, -5, -2, 1, 2, 3, 4, 5.

det A = 3 - tr A. The points are: (-7, 10), (-6, 9), (-3, 6), (0, 3), (1, 2), (2, 1), (3, 0), and (4, -1). The line intersects the parabola at (-6, 9) and (2, 1), i.e., where a = -5 and a = 3, respectively.

3. Make a table showing for each a in this list (1) the eigenvalues; (2) information about the phase portrait derived from the eigenvalues (saddle, node, spiral) and the stability type (stable if all real parts are negative; unstable if at least one real part is positive; undesignated if neither); (3) further information beyond what the eigenvalues alone tell you: if a spiral, the direction (clockwise or counterclockwise) of motion; if the eigenvalues are repeated, whether the matrix is defective or complete.

a	eigenvalues	info	more info
-6	-5, -2	stable node	
-5	-3	defective stable node	
-2	$\frac{-3\pm\sqrt{-15}}{2}$	stable spiral	clockwise
1	$\pm\sqrt{-3}$	center	clockwise
2	$\frac{1\pm\sqrt{-7}}{2}$	unstable spiral	clockwise
3	1	defective unstable node	
4	0, 3	unstable comb	
5	$2\pm\sqrt{5}$	saddle	

The defective nodes are defective, because $A - \lambda I$ is nonzero.

4. Make sure you know how to find the general solution to $\dot{\mathbf{u}} = A\mathbf{u}$ for each of these cases. Special attention is required in the defective node case.

18.03 Differential Equations Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.