12. RESONANCE AND THE EXPONENTIAL SHIFT LAW

12.1. Exponential shift. The calculation (10.1)

$$
\begin{equation*}
p(D) e^{r t}=p(r) e^{r t} \tag{1}
\end{equation*}
$$

extends to a formula for the effect of the operator $p(D)$ on a product of the form $e^{r t} u$, where u is a general function. This is useful in solving $p(D) x=f(t)$ when the input signal is of the form $f(t)=e^{r t} q(t)$.

The formula arises from the product rule for differentiation, which can be written in terms of operators as

$$
D(v u)=v D u+(D v) u .
$$

If we take $v=e^{r t}$ this becomes

$$
D\left(e^{r t} u\right)=e^{r t} D u+r e^{r t} u=e^{r t}(D u+r u) .
$$

Using the notation I for the identity operator, we can write this as

$$
\begin{equation*}
D\left(e^{r t} u\right)=e^{r t}(D+r I) u . \tag{2}
\end{equation*}
$$

If we apply D to this equation again,

$$
D^{2}\left(e^{r t} u\right)=D\left(e^{r t}(D+r I) u\right)=e^{r t}(D+r I)^{2} u,
$$

where in the second step we have applied (2) with u replaced by ($D+$ $r I) u$. This generalizes to

$$
D^{k}\left(e^{r t} u\right)=e^{r t}(D+r I)^{k} u
$$

The final step is to take a linear combination of D^{k} 's, to form a general LTI operator $p(D)$. The result is the

Exponential Shift Law:

$$
\begin{equation*}
p(D)\left(e^{r t} u\right)=e^{r t} p(D+r I) u \tag{3}
\end{equation*}
$$

The effect is that we have pulled the exponential outside the differential operator, at the expense of changing the operator in a specified way.
12.2. Product signals. We can exploit this effect to solve equations of the form

$$
p(D) x=e^{r t} q(t),
$$

by a version of the method of variation of parameter: write $x=e^{r t} u$, apply $p(D)$, use (3) to pull the exponential out to the left of the operator, and then cancel the exponential from both sides. The result is

$$
p(D+r I) u=q(t)
$$

a new LTI ODE for the function u, one from which the exponential factor has been eliminated.

Example 12.2.1. Find a particular solution to $\ddot{x}+\dot{x}+x=t^{2} e^{3 t}$.
With $p(s)=s^{2}+s+1$ and $x=e^{3 t} u$, we have

$$
\ddot{x}+\dot{x}+x=p(D) x=p(D)\left(e^{3 t} u\right)=e^{3 t} p(D+3 I) u .
$$

Set this equal to $t^{2} e^{3 t}$ and cancel the exponential, to find

$$
p(D+3 I) u=t^{2}
$$

or $\dot{u}+3 u=t^{2}$. This is a good target for the method of undetermined coefficients (Section 11). The first step is to compute

$$
p(s+3)=(s+3)^{2}+(s+3)+1=s^{2}+7 s+13
$$

so we have $\ddot{u}+7 \dot{u}+13 u=t^{2}$. There is a solution of the form $u_{p}=$ $a t^{2}+b t+c$, and we find it is

$$
u_{p}=(1 / 13) t^{2}-\left(14 / 13^{2}\right) t+\left(85 / 13^{3}\right) .
$$

Thus a particular solution for the original problem is

$$
x_{p}=e^{3 t}\left((1 / 13) t^{2}-\left(14 / 13^{2}\right) t+\left(85 / 13^{3}\right)\right) .
$$

Example 12.2.2. Find a particular solution to $\dot{x}+x=t e^{-t} \sin t$.
The signal is the imaginary part of $t e^{(-1+i) t}$, so, following the method of Section 10, we consider the ODE

$$
\dot{z}+z=t e^{(-1+i) t} .
$$

If we can find a solution z_{p} for this, then $x_{p}=\operatorname{Im} z_{p}$ will be a solution to the original problem.

We will look for z of the form $e^{(-1+i) t} u$. The Exponential Shift Law (3) with $p(s)=s+1$ gives

$$
\begin{gathered}
\dot{z}+z=(D+I)\left(e^{(-1+i) t} u\right)=e^{(-1+i) t}((D+(-1+i) I)+I) u \\
=e^{(-1+i) t}(D+i I) u
\end{gathered}
$$

When we set this equal to the right hand side we can cancel the exponential:

$$
(D+i I) u=t
$$

or $\dot{u}+i u=t$. While this is now an ODE with complex coefficients, it's easy to solve by the method of undetermined coefficients: there is a solution of the form $u_{p}=a t+b$. Computing the coefficients, $u_{p}=-i t+1$; so $z_{p}=e^{(-1+i) t}(-i t+1)$.

Finally, extract the imaginary part to obtain x_{p} :

$$
z_{p}=e^{-t}(\cos t+i \sin t)(-i t+1)
$$

has imaginary part

$$
x_{p}=e^{-t}(-t \cos t+\sin t) .
$$

12.3. Resonance. We have noted that the Exponential Response Formula for a solution to $p(D) x=e^{r t}$ fails when $p(r)=0$. For example, For example, suppose we have $\dot{x}+x=e^{-t}$. The Exponential Response Formula proposes a solution $x_{p}=e^{-t} / p(-1)$, but $p(-1)=0$ so this fails. There is no solution of the form $c e^{r t}$.

This situation is called resonance, because the signal is tuned to a natural mode of the system.

Here is a way to solve $p(D) x=e^{r t}$ when this happens. The ERF came from the calculation

$$
p(D) e^{r t}=p(r) e^{r t}
$$

which is valid whether or not $p(r)=0$. We will take this expression and differentiate it with respect to r, keeping t constant. The result, using the product rule and the fact that partial derivatives commute, is

$$
p(D) t e^{r t}=p^{\prime}(r) e^{r t}+p(r) t e^{r t}
$$

If $p(r)=0$ this simplifies to

$$
\begin{equation*}
p(D) t e^{r t}=p^{\prime}(r) e^{r t} \tag{4}
\end{equation*}
$$

Now if $p^{\prime}(r) \neq 0$ we can divide through by it and see:
The Resonant Exponential Response Formula: If $p(r)=0$ then a solution to $p(D) x=a e^{r t}$ is given by

$$
\begin{equation*}
x_{p}=a \frac{t e^{r t}}{p^{\prime}(r)} \tag{5}
\end{equation*}
$$

provided that $p^{\prime}(r) \neq 0$.
In our example above, $p(s)=s+1$ and $r=1$, so $p^{\prime}(r)=1$ and $x_{p}=t e^{-t}$ is a solution.

This example exhibits a characteristic feature of resonance: the solutions grow faster than you might expect. The characteristic polynomial leads you to expect a solution of the order of e^{-t}. In fact the solution is t times this. It still decays to zero as t grows, but not as fast as e^{-t} does.

Example 12.3.1. Suppose we have a harmonic oscillator represented by $\ddot{x}+\omega_{n}^{2} x$, or by the operator $D^{2}+\omega_{n}^{2} I=p(D)$, and drive it by the
signal $a \cos (\omega t)$. This ODE is the real part of

$$
\ddot{z}+\omega_{n}^{2} z=a e^{i \omega t},
$$

so the Exponential Response Formula gives us the periodic solution

$$
z_{p}=a \frac{e^{i \omega_{n} t}}{p(i \omega)}
$$

This is fine unless $\omega=\omega_{n}$, in which case $p\left(i \omega_{n}\right)=\left(i \omega_{n}\right)^{2}+\omega_{n}^{2}=0$; so the amplitude of the proposed sinusoidal response should be infinite. The fact is that there is no periodic system response; the system is in resonance with the signal.

To circumvent this problem, let's apply the Resonance Exponential Response Formula: since $p(s)=s^{2}+\omega_{n}^{2}, p^{\prime}(s)=2 s$ and $p^{\prime}\left(i \omega_{n}\right)=2 i \omega_{0}$, so

$$
z_{p}=a \frac{t e^{i \omega_{n} t}}{2 i \omega_{n}}
$$

The real part is

$$
x_{p}=\frac{a}{2 \omega_{n}} t \sin \left(\omega_{n} t\right) .
$$

The general solution is thus

$$
x=\frac{a}{2 \omega_{n}} t \sin \left(\omega_{n} t\right)+b \cos \left(\omega_{n} t-\phi\right) .
$$

In words, all solutions oscillate with pseudoperiod $2 \pi / \omega_{n}$, and grow in amplitude like $a t /\left(2 \omega_{n}\right)$. When ω_{n} is large - high frequency - this rate of growth is small.
12.4. Higher order resonance. It may happen that both $p(r)=0$ and $p^{\prime}(r)=0$. The general picture is this: Suppose that k is such that $p^{(j)}(r)=0$ for $j<k$ and $p^{(k)}(r) \neq 0$. Then $p(D) x=a e^{r t}$ has as solution

$$
\begin{equation*}
x_{p}=a \frac{t^{k} e^{r t}}{p^{(k)}(r)} . \tag{6}
\end{equation*}
$$

For instance, if $\omega=\omega_{0}=0$ in Example 12.3.1, $p^{\prime}(i \omega)=0$. The signal is now just the constant function a, and the ODE is $\ddot{x}=a$. Integrating twice gives $x_{p}=a t^{2} / 2$ as a solution, which is a special case of (6), since $e^{r t}=1$ and $p^{\prime \prime}(s)=2$.

You can see (6) in the same way we saw the Resonant Exponential Response Formula. So take (4) and differentiate again with respect to r :

$$
p(D) t^{2} e^{r t}=p^{\prime \prime}(r) e^{r t}+p^{\prime}(r) t e^{r t}
$$

If $p^{\prime}(r)=0$, the second term drops out and if we suppose $p^{\prime \prime}(r) \neq 0$ and divide through by it we get

$$
p(D)\left(\frac{t^{2} e^{r t}}{p^{\prime}(r)}\right)=e^{r t}
$$

which the case $k=2$ of (6). Continuing, we get to higher values of k as well.
12.5. Summary. The work of this section and the last can be summarized as follows: Among the responses by an LTI system to a signal which is polynomial times exponential (or a linear combination of such) there is always one which is again a linear combination of functions which are polynomial times exponential. By the magic of the complex exponential, sinusoidal factors are included in this.

MIT OpenCourseWare http://ocw.mit.edu

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

