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2. Higher-order Linear ODE’s 

2A. Second-order Linear ODE’s: General Properties 

2A-1. On the right below is an abbreviated form of the ODE on the left: 

(*) y + p(x)y � + q(x)y = r(x) Ly = r(x) ; 

where L is the differential operator: 

L = D2 + p(x)D + q(x) . 

a) If u1 and u2 are any two twice-differentiable functions, and c is a constant, then 

L(u1 + u2) = L(u1) + L(u2) and L(c u) = c L(u). 

Operators which have these two properties are called linear . Verify that L is linear, i.e., 
that the two equations are satisfied. 

b) Show that if yp is a solution to (*), then all other solutions to (*) can be written in 
the form 

y = yc + yp , 

where yc is a solution to the associated homogeneous equation Ly = 0. 

2A-2. 

a) By eliminating the constants, find a second-order linear homogeneous ODE whose 
x + c2e

2xgeneral solution is y = c1e . 

b) Verify for this ODE that the IVP consisting of the ODE together with the initial 
conditions 

y(x0) = y0, y (x0) = y � y0, y constants 0 0 

is always solvable. 

2A-3. 

a) By eliminating the constants, find a second-order linear homogeneous ODE whose 
y = c1x + c2x

2general solution is . 

b) Show that there is no solution to the ODE you found in part (a) which satisfies the 
initial conditions y(0) = 1, y�(0) = 1. 

c) Why doesn’t part (b) contradict the existence theorem for solutions to second-order 
linear homogeneous ODE’s? (Book: Theorem 2, p. 110.) 

2A-4. Consider the ODE y�� + p(x)y + q(x)y = 0. 

a) Show that if p and q are continuous for all x, a solution whose graph is tangent to 
the x-axis at some point must be identically zero, i.e., zero for all x. 

b) Find an equation of the above form having x2 as a solution, by calculating its 
derivatives and finding a linear equation connecting them. Why isn’t part (a) contradicted, 
since the function x2 has a graph tangent to the x axis at 0? 
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2 18.03 EXERCISES 

2A-5. Show that the following pairs of functions are linearly independent, by calculating 
their Wronskian. 

m1 x m2 x mxa) e , e , m1 = m2 b) e , xemx (can m = 0?) ⇒ 

2A-6. Consider y1 = x2 and y2 = x|x| . (Sketch the graph of y2.) 

a) Show that W (y1, y2) � 0 (i.e., is identically zero). 

b) Show that y1 and y2 are not linearly dependent on any interval (a, b) containing 0. 
Why doesn’t this contradict theorem 3b, p. 116 in your book? 

2A-7. Let y1 and y2 be two solutions of y�� + p(x)y + q(x)y = 0. 

dW 
a) Prove that = −p(x)W , where W = W (y1, y2), the Wronskian. 

dx


b) Prove that if p(x) = 0, then W (y1, y2) is always a constant.


c) Verify (b) by direct calculation for y�� + k2y = 0, k = 0, whose general solution is ⇒ 
y1 = c1 sin kx + c2 cos kx . 

2B. Reduction of Order 

2B-1. Find a second solution y2 to y �� − 2y + y = 0, given that one solution is y1 = e x, by 
three methods: 

a) putting y2 = uex and determining u(x) by substituting into the ODE; 

b) determining W (y1, y2) using Exercise 2A-7a, and from this getting y2; 

c) by using the general formula y2 = y1 
1 
2 e − p dx

dx . 
y1 

d) If you don’t get the same answer in each case, account for the differences. (What is 
the most general form for y2?) 

2B-2. In Exercise 2B-1, prove that the general formula in part (c) for a second solution gives 
a function y2 such that y1 and y2 are linearly independent. (Calculate their Wronskian.) 

2B-3. Use the method of reduction of order (as in 2B-1a) to find a second solution to 
2 � x y �� + 2xy − 2y = 0 , 

given that one solution is y1 = x. 

2B-4. Find the general solution on the interval (−1, 1) to the ODE 

(1 − x 2)y − 2xy � + 2y = 0, 

given that y1 = x is a solution. 
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3 SECTION 2. HIGHER-ORDER ODE’S 

2C. Second-order Linear ODE’s with Constant Coefficients 

2C-1. Find the general solution, or the solution satisfying the given initial conditions, to 
each of the following: 

a) y�� − 3y� + 2y = 0	 b) y�� + 2y − 3y = 0; y(0) = 1, y�(0) = −1 

c) y�� + 2y� + 2y = 0	 d) y�� − 2y� + 5y = 0; y(0) = 1, y�(0) = −1 

e) y�� − 4y� + 4y = 0; y(0) = 1, y�(0) = 1 

2C-2. Show by using the Wronskian criterion that eax cos bx and eax sin bx are linearly 
independent. Are there any restrictions on the constants a and b ? 

2C-3. Consider y�� + cy� + 4y = 0, c constant. For each statement below, tell for what 
value(s) of c it holds (indicate reasoning): 

a) the equation has oscillatory solutions 

b) all solutions are damped oscillations 

2C-4. Euler’s equidimensional equation is the ODE 

x 2 y + pxy � + qy = 0; p, q constants. 

a) Show that setting x = et changes it into an equation with constant coefficients. 

b) Use this to find the general solution to x2y�� + xy� + y = 0. 

2C-5. The equation mx�� + cx + kx = 0 represents the motion of a damped spring-mass 
system. (The independent variable is the time t.) 

How are the constants m, c, k related if the system is critically damped (i.e., just on the 
edge of being oscillatory)? 

2C-6. Show that the angle � of the pendulum swinging with small amplitude (so you can 
use the approximation sin � � �) approximately obeys a second-order ODE with constant 
coefficients. Use 

d� 
L = length, m = mass, damping = mc , for some constant c 

dt 

α 

m 
If the motion is undamped, i.e., c = 0, express the period in terms of L, m, and the 
gravitational constant g. α 

2C-7. For each of the following, tell what you would use as the trial solution in determining 
a particular solution by the method of undetermined coefficients 

xa) y �� + 2y � + 2y = x + e b) y �� − 4y	� = cos 2x

� x
c) y�� + 4y = 3 cos 2x	 d) y�� − 2y + y = 3e

e) y�� − 3y� + 2y = e−x + 3e2x f) y�� − 6y� + 9y = 2xe3x 

2C-8. Find the general solution, or the solution satisfying the given initial conditions: 

a) y�� − 6y� + 5y = ex	 b) y�� + 4y = 2 cos x, y(0) = 0, y�(0) = 1 

c) y�� + y� + y = 2x ex	 d) y�� − y = x2 , y(0) = 0, y�(0) = −1 

L 
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4 18.03 EXERCISES 

2C-9. Consider the ODE y�� + p(x)y + q(x)y = r(x). 

a) Prove that if yi is a particular solution when r = ri(x), (i = 1, 2), then y1 + y2 is a 
particular solution when r = r1 + r2. (Use the ideas of Exercise 2A-1.) 

b) Use part (a) to find a particular solution to y�� + 2y� + 2y = 2x + cos x. 

2C-10. A series RLC-circuit is modeled by either of the ODE’s (the second equation is 
just the derivative of the first) 

Lq�� + Rq � + 
q 

= E , 
C 
i 

Li�� + Ri� + = , 
C 

E
where q(t) is the charge on the capacitor, and i(t) is the current in the circuit; E(t) is the 
applied electromotive force (from a battery or generator), and the constants L, R, C are 
respectively the inductance of the coil, the resistance, and the capacitance, measured in 
some compatible system of units. 

a) Show that if R = 0 and E = 0, then q(t) varies periodically, and find the period. 
(Assume L = 0.) ⇒


b) Assume E = 0; how must R, L, C be related if the current oscillates?


c) If R = 0 and E = E0 sin �t, then for a certain �0, the current will have large amplitude 
whenever � � �0. What is the value of �0. (Indicate reason.) 

2D. Variation of Parameters 

2D-1. Find a particular solution by variation of parameters: 
� − 3y = e−xa) y�� + y = tan x b) y�� + 2y

c) y�� + 4y = sec2 2x 

2D-2. Bessel’s equation of order p is x 2 y �� + xy � + (x 2 − p 2)y = 0. 
1For p = 2 , two independent solutions for x > 0 are


sin x cos x

y1 = and y2 = , x > 0.≤

x 
≤

x 

Find the general solution to 
2 �� 1 x y + xy � + (x 2 − 4 ) y = x3/2 cos x . 

2D-3. Consider the ODE y�� + p(x)y + q(x)y = r(x). 

a) Show that the particular solution obtained by variation of parameters can be written 
as the definite integral 

� y1(t) �y2(t) 
x 

� y1(x) �y2(x) 
y = r(t) dt . 

W (y1(t), y2(t))a 

(Write the functions v1 and v2 (in the Variation of Parameters formula) as definite integrals.) 

b) If instead the particular solution is written as an indefinite integral, there are arbitrary 
constants of integration, so the particular solution is not precisely defined. Explain why this 
doesn’t matter. 

2D-4. When must you use variation of parameters to find a particular solution, rather 
than the method of undetermined coefficients? 
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5 SECTION 2. HIGHER-ORDER ODE’S 

2E. Complex Numbers 

All references are to Notes C: Complex Numbers 

2E-1. Change to polar form: a) −1 + i b) 
≤

3 − i . 

2E-2. Express 
1 − i 

in the form a + bi by two methods: one using the Cartesian form 
1 + i 

throughout, and one changing numerator and denominator to polar form. Show the two 
answers agree. 

2E-3.* Show the distance between any two complex points z1 and z2 is given by z2 − z1 .| |

2E-4. Prove two laws of complex conjugation: 

for any complex numbers z and w, a) z + w = z + w b) zw = zw . 

2E-5.* Suppose f (x) is a polynomial with real coefficients. Using the results of 2E-4, show 
that if a + ib is a zero, then the complex conjugate a − ib is also a zero. (Thus, complex 
roots of a real polynomial occur in conjugate pairs.) 

i�� 
2E-6.* Prove the formula ei� e = ei(�+��) by using the definition (Euler’s formula (9)), 
and the trigonometric addition formulas.


2E-7. Calculate each of the following two ways: by changing to polar form and using

DeMoivre’s formula (13), and also by using the binomial theorem.


a) (1 − i)4 b) (1 + i
≤

3)3 

2E-8.* By using DeMoivre’s formula (13) and the binomial theorem, express cos 3ω and

sin 3ω in terms of cos ω and sin ω.


2E-9. Express in the form a + bi the six sixth roots of 1.


2E-10. Solve the equation x4 + 16 = 0.


2E-11.* Solve the equation x4 + 2x2 + 4 = 0, expressing the four roots in both the polar

form and the Cartesian form a + bi.


2E-12.* Calculate A and B explicitly in the form a + bi for the cubic equation on the first

page of Notes C, and then show that A + B is indeed real, and a root of the equation.


2E-13.* Prove the law of exponentials (16), as suggested there.


2E-14. Express sin4 x in terms of cos 4x and cos 2x, using (18) and the binomial

theorem. Why would you not expect sin 4x or sin 2x in the answer?


2E-15. Find e 2x sin x dx by using complex exponentials. 

12E-16. Prove (18): a) cos x = 2 (e
ix + e−ix), b) sin x = 2

1 
i (e

ix − e−ix) . 

2E-17.* Derive formula (20): D(e(a+ib)x) = (a + ib)e(a+ib)x from the definition of complex 
exponential and the derivative formula (19): D(u + iv) = Du + iDv. 

2E-18.* Find the three cube roots of unity in the a + bi form by locating them on the unit 
circle and using elementary geometry. 
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6 18.03 EXERCISES 

2F. Linear Operators and Higher-order ODE’s 

2F-1. Find the general solution to each of the following ODE’s: 

a) (D − 2)3(D2 + 2D + 2) y = 0 b) (D8 + 2D4 + 1) y = 0 

c) y(4) + y = 0 d) y(4) − 8y�� + 16y = 0 

e) y(6) − y = 0 (use 2E-9) f) y(4) + 16y = 0 (use 2E-10) 

2F-2. Find the solution to y(4) − 16y = 0, which in addition satisfies the four side 
conditions y(0) = 0, y�(0) = 0, y(�) = 1, and |y(x) < K for some constant K and|
all x > 0.


2F-3. Find the general solution to


2a) (D3 − D2 + 2D − 2) y = 0 b) (D3 + D − 2) y = 0 

c) y(3) − 2y� − 4 = 0 d) y(4) + 2y�� + 4y = 0 

(By high-school algebra, if m is a zero of a polynomial p(D), then (D − m) is a factor of 
p(D). If the polynomial has integer coefficients and leading coefficient 1, then any integer 
zeros of p(D) must divide the constant term.) 

2F-4. A system consisting of two coupled springs is modeled by the 
pair of ODE’s (we take the masses and spring constants to be 1; in the 
picture the Si are springs, the mi are the masses, and xi represents the 
distance of mass mi from its equilibrium position (represented here by a 

S 

S1 

2 

x1 m 
short horisontal line)): 1 

x1 + 2x1 − x2 = 0, x2 + x2 − x1 = 0 .


a) Eliminate x1 to get a 4th order ODE for x2. x
2 
m 

b) Solve it to find the general solution. 

2F-5. Let y = e 2x cos x. Find y �� by using operator formulas. 

2F-6. Find a particular solution to 

a) (D2 + 1)y = 4ex b) y(3) + y�� − y� + 2y = 2 cos x 

xc) y�� − 2y� + 4y = e cos x d) y�� − 6y� + 9y = e3x 

(Use the methods in Notes O; use complex exponentials where possible.) 

2F-7. Find a particular solution to the general first-order linear equation with constant 
coefficients, y� + ay = f(x), by assuming it is of the form yp = e−axu, and applying the 
exponential-shift formula. 

2 
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7 SECTION 2. HIGHER-ORDER ODE’S 

2G. Stability of Linear ODE’s with Constant Coefficients 

2G-1. For the equation y�� + 2y + cy = 0, c constant, 

(i) tell which values of c correspond to each of the three cases in Notes S, p.2; 
(ii) for the case of two real roots, tell for which values of c both roots are negative, both 

roots are positive, or the roots have different signs. 
(iii) Summarize the above information by drawing a c-axis, and marking the intervals on 

it corresponding to the different possibilities for the roots of the characteristic equation. 
(iv) Finally, use this information to mark the interval on the c-axis for which the corre

sponding ODE is stable. (The stability criterion using roots is what you will need.) 

2G-2. Prove the stability criterion (coefficient form) (Notes S,(8)), in the direction =∗. 

(You can assume that a0 > 0, after multiplying the characteristic equation through by 
−1 if necessary. Use the high-school algebra relations which express the coefficients in terms 
of the roots.) 

2G-3. Prove the stability criterion in the coefficient form (Notes S,(8)) in the direction ≥=. 
Use the quadratic formula, paying particular attention to the case of two real roots. 

2G-4.* Note: in what follows, formula references (11), (12), etc. are to Notes S. 

(a) Prove the higher-order stability criterion in the coefficient form (12). 

(You can use the fact that a real polynomial factors into linear and quadratic factors, 
corresponding respectively to its real roots and its pairs of complex conjugate roots. You 
will need (11) and the stability criterion in the coefficient form for second-order equations.) 

(b) Prove that the converse to (12) is true for those equations all of whose characteristic 
roots are real. 

(Use an indirect proof — assume it is false and derive a contradiction.) 

(c) To illustrate that the converse to (12) is in general false, show by using the criterion 
(11) that the equation y��� + y�� + y� + 6y = 0 is not stable. (Find a root of the characteristic 
equation by inspection, then use this to factor the characteristic polynomial.) 

2G-5.* (a) Show when n = 2, the Routh-Hurwitz conditions (Notes S, (13)) are the same 
as the conditions given for second-order ODE’s in (8). 

(b) For the ODE y��� + y�� + y� + cy = 0, use the Routh-Hurwitz conditions to find all 
values of c for which the ODE is stable. 

2G-6.* Take as the input r(t) = At, where A is a constant, in the ODE 

(1) ay + by� + cy = r(t), a, b, c constants, t = time. 

a) Assume a, b, c > 0 and find by undetermined coefficients the steady-state solution. 
Express it in the form K(t − d), where K and d are constants depending on the parameter 
A and on the coefficients of the equation. 

b) We may think of d as the “time-delay”. Going back to the two physical interpretations 
of (1) (i.e., springs and circuits), for each interpretation, express d in terms of the usual 
constants of the system (m-b-k, or R-L-C, depending on the interpretation). 
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8 18.03 EXERCISES 

2H. Impulse Response and Convolution 

2H-1. Find the unit impulse response w(t) to y�� − k2y = f (t). 

2H-2.* a) Find the unit impulse response w(t) to y�� − (a + b)y + aby = f (t). 

b) As b � a, the associated homogeneous system turns into one having the repeated 
characteristic root a, and teat as its weight function, according to Example 2 in the Notes. 
So the weight function w(t) you found in part (a) should turn into t eat, even though the 
two functions look rather different. 

Show that indeed, lim w(t) = t e at . (Hint: write b = a + h and find limh�0.) 
b�a 

2H-3. a) Use (10) in Notes I to solve y�� + 4y� + 4y = f (x), y(0) = y�(0) = 0, x → 0,

where f (x) = e−2x .

Check your answer by using the method of undetermined coefficients.



 
−2xe , 0 ≈ x ≈ 1; 

b)* Build on part (a) by using (10) to solve the IVP if f (x) = 
0, x > 1 . 

� x 

2H-4. Let α(x) = (2x + 3t)2dt. Calculate α�(x) two ways: 
0 

a) by using Leibniz’ formula 
b) directly, by calculating α(x) explicitly, and differentiating it. 

2H-5.* Using Leibniz’ formula, verify directly that these IVP’s have the solution given: 

1 
� x 

a) y �� + y = f (x), y(0) = y �(0) = 0; yp = sin k(x − t) f (t) dt. 
k 0 

� x 

b) y�� − 2ky� + k2y = f (x), y(0) = y�(0) = 0; yp = (x − t)e k(x−t) f (t) dt. 
0 

2H-6.* Find the following convolutions, as explicit functions f (x): 

ax axa) e ≡ e = xeax (cf. (15)) b) 1 ≡ x c) x ≡ x2 

2H-7.* Give, with reasoning, the solution to Example 7. 

2H-8.* Show y� + ay = r(x), y(0) = 0 has the solution yp = e−ax ≡ r(x) by 
a) Leibniz’ formula 
b) solving the IVP by the first-order method, using a definite integral (cf. Notes D). 

2H-9.* There is an analogue of (10) for the IVP with non-constant coefficients: 

(*) y + p(x)y � + q(x)y = f (x), y(0) = y �(0) = 0. 

It assumes you know the complementary function: yc = c1u(x) + c2v(x). It says 
� u(t) v(t) 

� x 

y(x) = g(x, t) f (t) dt, where g(x, t) = � � . 
� u(x) v(x) 

0 
� u(t) v(t) 
� u�(t) v�(t) 

By using Leibniz’ formula, prove this solves the IVP (*). 
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