Extended Green's Theorem

Let \mathbf{F} be the "tangential field" $\mathbf{F}=\frac{-y \mathbf{i}+x \mathbf{j}}{r^{2}}$, defined on the punctured plane $D=\mathbf{R}^{2}-(0,0)$. It's easy to compute (we've done it before) that curl $\mathbf{F}=0$ in D.

Question: For the tangential field \mathbf{F}, what do you think the possible values of $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ could be if C were allowed to be any closed curve?
Answer: As we saw in lecture, if C is simple and positively oriented we have two cases: $\begin{array}{ll}\text { (i) } C_{1} \text { not around } 0 & \text { (ii) } C_{2} \text { around } 0\end{array}$
(i) Green's Theorem $\Rightarrow \oint_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\iint_{R} \operatorname{curl} \mathbf{F} \cdot \mathbf{k} d A=0$.
(ii) We show that $\oint_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=2 \pi$.

Let C_{3} be a small circle of radius a, entirely inside C_{2}.
By extended Green's Theorem
$\oint_{C_{2}} \mathbf{F} \cdot d \mathbf{r}-\oint_{C_{3}} \mathbf{F} \cdot d \mathbf{r}=\iint_{R} \operatorname{curl} \mathbf{F} \cdot \mathbf{k} d A=0$
$\Rightarrow \oint_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=\oint_{C_{3}} \mathbf{F} \cdot d \mathbf{r}$.
On the circle C_{3} we can easily compute the line integral:
$\mathbf{F} \cdot \mathbf{T}=1 / a \Rightarrow \oint_{C_{3}} \mathbf{F} \cdot \mathbf{T} d s=\int_{C_{3}} \frac{1}{a} d s=\frac{2 \pi a}{a}=2 \pi . \quad$ QED

If C is positively oriented but not simple, the figure to the right suggests that we can break C into two curves around the origin at a point where it crosses itself. Repeating this as often as necessary, we find that $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=2 \pi n$, where n is the number of times C goes counterclockwise around $(0,0)$.
If C is negatively oriented $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=-\oint_{C^{\prime}} \mathbf{F} \cdot d \mathbf{r}$, where C^{\prime} is an oppositely oriented copy of C. Hence, our final answer is that $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ may equal $2 \pi n$
 for any integer n.
An interesting aside: n is called the winding number of C around $0 . n$ also equals the number of times C crosses the positive x-axis, counting +1 from below and -1 from above.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

