Problems: Extended Green's Theorem

1. Is $\mathbf{F} = \frac{y \, dx - x \, dy}{y^2}$ exact? If so, find a potential function. <u>Answer:</u> $M = \frac{1}{y}$ and $N = -\frac{x}{y^2}$ are continuously differentiable whenever $y \neq 0$, i.e. in the two half-planes R_1 and R_2 – both simply connected. Since $M_y = -1/y^2 = N_x$ in each half-plane the field is exact where it is defined. To find a potential function f for which $\mathbf{F} = df$ we use method 2. $f_x = 1/y \Rightarrow f = x/y + g(y)$.

(continued)

Example 3: Let $\mathbf{F} = r^n (x\mathbf{i} + y\mathbf{j})$. Use extended Green's Theorem to show that \mathbf{F} is conservative for all integers n. Find a potential function.

First note, $M = r^n x$, $N = r^n y \Rightarrow M_y = nr^{n-2}xy = N_x \Leftrightarrow \operatorname{curl} \mathbf{F} = 0$.

We show **F** is conservative by showing $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for all simple closed curves C.

If C_1 is a simple closed curve not around 0 then Green's Theorem implies $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = 0$.

If C_3 is a circle centered on (0,0) then, since **F** is radial $\oint_{C_3} \mathbf{F} \cdot d\mathbf{r} = \oint_{C_3} \mathbf{F} \cdot \mathbf{T} \, ds = 0$. If C_3 completely surrounds C_2 then extended Green's Theorem

implies $\oint_{C_2} \mathbf{F} \cdot d\mathbf{r} = \oint_{C_3} \mathbf{F} \cdot d\mathbf{r} = 0.$ Thus $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ for all closed loops $\Rightarrow \mathbf{F}$ is conservative.

To find the potential function we use method 1 over the curve C shown.

The calculation works for n = 2. For n = 2 everything is the same except we'd get natural logs instead of powers. (We also ignore the fact that if (x_1, y_1) is on the negative x-axis we shoud use a different path that doesn't go through the origin. This isn't really an issue since we already know a potential function exists, so continuity would handle these points without using an integral.)

$$\begin{split} f(x_1, y_1) &= \int_{C_{y_1}} r^n x \, dx + r^n y \, dy \\ &= \int_{1}^{y_1} (1+y^2)^{n/2} y \, dy + \int_{1}^{x_1} (x^2+y_1^2)^{n/2} x \, dx \\ &= \left. \frac{(1+y^2)^{(n+2)/2}}{n+2} \right|_{1}^{y_1} + \frac{(x^2+y_1^2)^{(n+2)/2}}{n+2} \right|_{1}^{x_1} \\ &= \left. \frac{(1+y_1^2)^{(n+2)/2} - 2^{(n+2)/2}}{n+2} + \frac{(x_1^2+y_1^2)^{(n+2)/2} - (1+y_1^2)}{(n+2)/2} \right| \\ &= \frac{(x_1^2+y_1^2)^{(n+2)/2} - 2^{(n+1)/2}}{n+2} \\ \Rightarrow \left. \frac{f(x,y) = \frac{r^{n+2}}{n+2} + C.}{n+2} \right| \\ \text{If } n = -2 \text{ we get } f(x,y) = \ln r + C. \end{split}$$

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.