Problems: Extended Green's Theorem

1. Is $\mathbf{F}=\frac{y d x-x d y}{y^{2}}$ exact? If so, find a potential function.

Answer: $M=\frac{1}{y}$ and $N=-\frac{x}{y^{2}}$ are continuously differentiable whenever $y \neq 0$, i.e. in the two half-planes R_{1} and R_{2} - both simply connected.
Since $M_{y}=-1 / y^{2}=N_{x}$ in each half-plane the field is exact where it is defined.
To find a potential function f for which $\mathbf{F}=d f$ we use method 2 .
$f_{x}=1 / y \Rightarrow f=x / y+g(y)$.
$f_{y}=-x / y^{2}+g^{\prime}(y)=-x / y^{2} \Rightarrow g^{\prime}(y)=0 \Rightarrow g(y)=c$.

$\Rightarrow f(x, y)=x / y+c$.

Example 3: Let $\mathbf{F}=r^{n}(x \mathbf{i}+y \mathbf{j})$. Use extended Green's Theorem to show that \mathbf{F} is conservative for all integers n. Find a potential function.
First note, $M=r^{n} x, N=r^{n} y \Rightarrow M_{y}=n r^{n-2} x y=N_{x} \Leftrightarrow \operatorname{curl} \mathbf{F}=0$.
We show \mathbf{F} is conservative by showing $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for all simple closed curves C.
If C_{1} is a simple closed curve not around 0 then Green's Theorem implies $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=0$.
If C_{3} is a circle centered on $(0,0)$ then, since \mathbf{F} is radial $\oint_{C_{3}} \mathbf{F} \cdot d \mathbf{r}=\oint_{C_{3}} \mathbf{F} \cdot \mathbf{T} d s=0$.
If C_{3} completely surrounds C_{2} then extended Green's Theorem
implies $\oint_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=\oint_{C_{3}} \mathbf{F} \cdot d \mathbf{r}=0$.
Thus $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for all closed loops $\Rightarrow \mathbf{F}$ is conservative.
To find the potential function we use method 1 over the curve C shown.

The calculation works for $n=2$. For $n=2$ everything is the same except we'd get natural logs instead of powers. (We also ignore the fact that if $\left(x_{1}, y_{1}\right)$ is on the negative x-axis we shoud use a different path that doesn't go through the origin. This isn't really an issue since we already know a potential function exists, so continuity would handle these points without using an integral.)

$$
\begin{aligned}
f\left(x_{1}, y_{1}\right) & =\int_{C} r^{n} x d x+r^{n} y d y \\
& =\int_{1}^{y_{1}}\left(1+y^{2}\right)^{n / 2} y d y+\int_{1}^{x_{1}}\left(x^{2}+y_{1}^{2}\right)^{n / 2} x d x \\
& =\left.\frac{\left(1+y^{2}\right)^{(n+2) / 2}}{n+2}\right|_{1} ^{y_{1}}+\left.\frac{\left(x^{2}+y_{1}^{2}\right)^{(n+2) / 2}}{n+2}\right|_{1} ^{x_{1}} \\
& =\frac{\left(1+y_{1}^{2}\right)^{(n+2) / 2}-2^{(n+2) / 2}}{n+2}+\frac{\left(x_{1}^{2}+y_{1}^{2}\right)^{(n+2) / 2}-\left(1+y_{1}^{2}\right)}{(n+2) / 2} \\
& =\frac{\left(x_{1}^{2}+y_{1}^{2}\right)^{(n+2) / 2}-2^{(n+1) / 2}}{n+2} \\
\Rightarrow f(x, y) & =\frac{r^{n+2}}{n+2}+C .
\end{aligned}
$$

If $n=-2$ we get $f(x, y)=\ln r+C$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

