Problems: Normal Form of Green's Theorem

Use geometric methods to compute the flux of \mathbf{F} across the curves C indicated below, where the function $g(r)$ is a function of the radial distance r.

1. $\mathbf{F}=g(r)\langle x, y\rangle$ and C is the circle of radius a centered at the origin and traversed in a clockwise direction.
Answer: (Radial field) \mathbf{F} is parallel to \mathbf{n} with $\langle x, y\rangle=a \mathbf{n}$ on C, so we have $\mathbf{F} \cdot \mathbf{n}=g(a) \cdot a$ \Rightarrow Flux $=g(a) 2 \pi a^{2}$.
2. $\mathbf{F}=g(r)\langle-y, x\rangle ; C$ as above.

Answer: (Tangential field) Since \mathbf{F} is orthogonal to \mathbf{n} the flux is 0 .
3. $\mathbf{F}=3\langle 1,1\rangle ; C$ is the line segment from $(0,0)$ to $(1,1)$.

Answer: Since \mathbf{F} is parallel to the line segment C we have $\mathbf{F} \cdot \mathbf{n}=0 . \Rightarrow$ flux $=0$.
4. $\mathbf{F}=3\langle-1,1\rangle ; C$ is the line segment from $(0,0)$ to $(1,1)$.

Answer: \mathbf{F} is orthogonal to C. \mathbf{F} points in the opposite direction from \mathbf{n} because \mathbf{n} is clockwise from the direction vector for C.
\Rightarrow flux $=\int \mathbf{F} \cdot \mathbf{n} d S=\int 3 \sqrt{2} d s=6$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

