Finding Area Using Line Integrals

Use a line integral (and Green's Theorem) to find the area of the unit circle.
Answer: Recall that Green's Theorem tells us $\oint_{C} M d x+N d y=\iint_{R} N_{x}-M_{y} d A$. To find the area of the unit circle we let $M=0$ and $N=x$ to get $\iint_{R} 1 d A=\oint_{C} x d y$. We parametrize the circle by $x=\cos \theta, y=\sin \theta, 0<\theta \leq 2 \pi$, so $x d y=\cos ^{2} \theta d \theta$. Then

$$
\begin{aligned}
\text { Area } & =\iint_{R} 1 d A \\
& =\oint_{C} x d y \\
& =\int_{0}^{2 \pi} \cos ^{2} \theta d \theta \\
& =\int_{0}^{2 \pi} \frac{1+\cos 2 \theta}{2} d \theta \\
& =\left.\frac{1}{2}\left(\theta+\frac{1}{2} \sin 2 \theta\right)\right|_{0} ^{2 \pi} \\
& =\pi
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

