Problems: Green's Theorem and Area

1. Find M and N such that $\oint_{C} M d x+N d y$ equals the polar moment of inertia of a uniform density region in the plane with boundary C.

Answer: Let R be the region enclosed by C and ρ be the density of R. The polar moment of inertia is calculated by integrating the product mass times distance to the origin:

$$
I=\iint_{R} d I=\iint_{R} r^{2} d m=\iint_{R}\left(x^{2}+y^{2}\right) \cdot \rho d A .
$$

Green's theorem now tells us that we're looking for functions M and N such that $N_{x}-M_{y}=$ $\rho x^{2}+\rho y^{2}$. The simplest choice is $N_{x}=\rho y^{2}, M_{y}=-\rho x^{2}$. This leads to $N=\rho x y^{2}$, $M=-\rho x^{2} y$.
Use Green's theorem to check this answer:

$$
\begin{aligned}
\oint_{C}-\rho x^{2} y d x+\rho x y^{2} d y & =\iint_{R} \rho y^{2}-\left(-\rho x^{2}\right) d A \\
& =\iint_{R} r^{2} \cdot \rho d A=I .
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

