Identifying Gradient Fields and Exact Differentials

1. Compute the curl of the tangential vector field $\mathbf{F}=\left\langle-\frac{y}{r^{2}}, \frac{x}{r^{2}}\right\rangle$.
2. Show that \mathbf{F} is not conservative by computing $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the unit circle.
3. Why do you think we refer to \mathbf{F} as a "tangential" vector field?

4 In polar coordinates, $\theta(x, y)=\tan ^{-1} y / x$. Show that $\mathbf{F}=\nabla \theta$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

