Identifying Gradient Fields and Exact Differentials

1. Compute the curl of the tangential vector field $\mathbf{F}=\left\langle-\frac{y}{r^{2}}, \frac{x}{r^{2}}\right\rangle$.

Answer: We know that if $\mathbf{F}=\langle M, N\rangle$ then $\operatorname{curl\mathbf {F}}=N_{x}-M_{y}$. In this case, $M=-\frac{y}{r^{2}}$ and $N=\frac{x}{r^{2}}$. Applying the chain rule and differentiating $r^{2}=x^{2}+y^{2}$ as needed, we get $N_{x}=\frac{y^{2}-x^{2}}{r^{4}}$ and $M_{y}=\frac{y^{2}-x^{2}}{r^{4}}$. Thus, $\operatorname{curl} \mathbf{F}=0$.
2. Show that \mathbf{F} is not conservative by computing $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the unit circle.

Answer: Note: since \mathbf{F} is not defined at $(0,0)$, curlF $=0$ does not necessarily mean \mathbf{F} is conservative.

We parametrize C by $x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$. Then $d x=-\sin t d t$ and $d y=\cos t d t$.

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\oint_{C} M d x+N d y \\
& =\int_{0}^{2 \pi}-\frac{\sin t}{1^{2}}(-\sin t) d t+\frac{\cos t}{1^{2}} \cos t d t \\
& =2 \pi
\end{aligned}
$$

If \mathbf{F} were conservative its line integral over a simple, closed curve (like the unit circle) would be zero. Since this is not the case, \mathbf{F} must not be conservative.
3. Why do you think we refer to \mathbf{F} as a "tangential" vector field?

Answer: Every vector in \mathbf{F} is tangential to some circle centered at the origin. You can see this because \mathbf{F} is clearly orthogonal to the "radial" vector field $\langle x, y\rangle$.

4 In polar coordinates, $\theta(x, y)=\tan ^{-1} y / x$. Show that $\mathbf{F}=\nabla \theta$.
Answer: We wish to show that $M=\theta_{x}$ and $N=\theta_{y}$.

$$
\begin{gathered}
\theta_{x}=\frac{1}{1+\left(\frac{y}{x}\right)^{2}} \frac{-y}{x^{2}}=-\frac{y}{r^{2}}=M \\
\theta_{y}=\frac{1}{1+\left(\frac{y}{x}\right)^{2}} \frac{1}{x}=\frac{x}{r^{2}}=N
\end{gathered}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

