Green's Theorem and Conservative Fields

We can use Green's theorem to prove the following theorem.

Theorem

Suppose $\mathbf{F} = \langle M, N \rangle$ is a vector field which is defined and with continuous partial derivatives for all (x, y). Then

F is conservative
$$\Leftrightarrow N_x = M_y$$
 or $N_x - M_y = \operatorname{curl} \mathbf{F} = 0$.

Proof

This is a consequence of Green's theorem. First, suppose \mathbf{F} is conservative, i.e., its work integral is 0 along all simple closed curves. Then Green's theorem says

$$0 = \oint_C \mathbf{F} \cdot d\mathbf{r} = \int \int_R \operatorname{curl} \mathbf{F} \, dA.$$

The only way for the integral of curl \mathbf{F} to be 0 over all regions R is if curl \mathbf{F} itself is 0. This implies $N_x = M_y$ as claimed.

For the converse, assume $N_x = M_y$. Then, for any closed curve C surrounding a region R, Green's theorem says,

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \int \int_R N_x - M_y \, dA = 0.$$

Therefore, the work integral of \mathbf{F} is 0 over any closed curve, which means \mathbf{F} is conservative.

Be careful, the requirement that \mathbf{F} is defined and differentiable everywhere is important. The problem following this note will give an example of a nonconservative field with curl $\mathbf{F} = 0$. Later we will learn how to handle fields that aren't defined everywhere. MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.