## Using Green's Theorem

1. Show that $\oint_{C}-x^{2} y d x+x y^{2} d y>0$ for all simple closed curves $C$.

## Answer:

If $R$ is the interior of $C$, then Green's Theorem tells us:

$$
\oint_{C} M d x+N d y=\iint_{R} N_{x}-M_{y} d A .
$$

Here, $M=-x^{2} y$ and $N=x y^{2}$, so $N_{x}-M_{y}=y^{2}-\left(-x^{2}\right)=x^{2}+y^{2}$. In other words, $N_{x}-M_{y}$ is the square of the distance from $(x, y)$ to the origin. This distance is always positive, so the integral of this value over any non-empty region in the plane will be positive.
We conclude that $\oint_{C}-x^{2} y d x+x y^{2} d y=\iint_{R}\left(x^{2}+y^{2}\right) d A>0$.
2. Let $\mathbf{F}=2 y \mathbf{i}+x \mathbf{j}$ and let $C$ be the positively oriented unit circle. Compute $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ directly and by Green's theorem.
Answer: Using Green's theorem: $N_{x}-M_{y}=1-2=-1$, so $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{R}(-1) d A=-\pi$.
Directly (using half-angle formulas): We parametrize $C$ by $x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$. Then

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi}-2 \sin ^{2} t+\cos ^{2} t d t=\int_{0}^{2 \pi}-(1-\cos 2 t)+\frac{1+\cos 2 t}{2} d t=-\pi .
$$

MIT OpenCourseWare
http://ocw.mit.edu

### 18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

