Green's Theorem

Green's Theorem

We start with the ingredients for Green's theorem.
(i) C a simple closed curve (simple means it never intersects itself)
(ii) R the interior of C.

We also require that C must be positively oriented, that is, it must be traversed so its interior is on the left as you move in around the curve. Finally we require that C be piecewise smooth. This means it is a smooth curve with, possibly a finite number of corners.
Here are some examples.

Green's Theorem

With the above ingredients for a vector field $\mathbf{F}=\langle M, N\rangle$ we have

$$
\oint_{C} M d x+N d y=\iint_{R} N_{x}-M_{y} d A .
$$

We call $N_{x}-M_{y}$ the two dimensional curl and denote it curl \mathbf{F}.
We can write also Green's theorem as

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{R} \operatorname{curl} \mathbf{F} d A .
$$

Example 1: (use the right hand side (RHS) to find the left hand side (LHS))
Use Green's Theorem to compute
$I=\oint_{C} 3 x^{2} y^{2} d x+2 x^{2}(1+x y) d y$ where C is the circle shown.
By Green's Theorem $I=\iint_{R} 6 x^{2} y+4 x-6 x^{2} y d A=4 \iint_{R} x d A$.
We could compute this directly, but we know $x_{c m}=\frac{1}{A} \iint_{R} x d A=a$
$\Rightarrow \iint_{R} x d A=\pi a^{3} \Rightarrow I=4 \pi a^{3}$.
Example 2: (Use the LHS to find the RHS.)
Use Green's Theorem to find the area under one arch of the cycloid

$$
x=a(\theta-\sin \theta), y=a(1-\cos \theta) .
$$

The picture shows the curve $C=C_{1}-C_{2}$ surrounding the area we want to find.(Note the minus sign on C_{2}.)
By Green's Theorem,

$$
\oint_{C}-y d x=\iint_{R} d A=\text { area. }
$$

Thus,

$$
\text { area }=\oint_{C_{1}-C_{2}}-y d x=\int_{C_{1}} 0 \cdot d x-\int_{C_{2}}-y d x=\int_{0}^{2 \pi} a^{2}(1-\cos \theta)^{2} d \theta=3 \pi a^{2} .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

