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18.02 Problem Set 9, Part II Solutions 

1. (a) If C is a simple closed curve enclosing the region R then 

F dr = curl F dx dy · 
C R 

= (6x − x 3)x − (y 3 − 6y)y dx dy � �R 

= (6 − 3x 2 + 6 − 3y 2) dx dy � �R 

= (12 − 3x 2 − 3y 2) dx dy 
R 

We seek to maximize this integral. The function 12 − 3x2 − 3y2 is ≥ 0 when 

3x 2 + 3y 2 ≤ 12 

or x2 + y2 ≤ 22 . So the function is ≥ 0 on the disc D of radius 2 centered 
at 0. When R = D we maximize this integral. Thus when C is the curve 
tracing the boundary of D in the counter-clockwise direction, we maximize 

F dr.
C · 

(b) We just calculate � � � 2π � 2 

(12 − 3x 3 − 3y 2) dx dy = (12 − 3r 2) rdr dθ 
D θ=0 r=0� 2π � �2

3 
= 6r 2 r 4 dθ− 

4θ=0 0� 2π 3 
= 6 22 24 dθ· − 

4θ=0 

= 2π(24 − 12) = 24π 

2. (a) The equation of continuity as stated is equivalent to the the state-�� �� 
∂ρ 

ment that dA + div(F) dA = 0 for all simple bounded regions 
∂t R R 

dR. The first integral in the sum is equal to 
dt M(R; t), where M(R; t) = 

R ρ(x, y, t) dA is the mass contained in the region R �at time t. By Green’s 

theorem, the second (or divergence) integral is equal to F(x, y, t) · n̂ out ds, 
C 

which is the mass flux out of the region R at time t, that is, the net rate 
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at which mass is leaving R through the boundary C, in mass per unit time. 
Thus mass is conserved if and only if this net boundary rate, which is equal 
to the divergence integral, is equal to − d M(R, t). (To check that the signs 

dt 
are right, take for example d M(R, t) > 0; then the mass in R is increasing, 

dt 
and so mass must be coming into R through C at that rate.) 

(b) div (g G) = ∂(gM) + ∂(gM ) = (gxM + gMx) + (gyN + gNy) = 
∂x ∂y 

= (gxM + gyN) + (gMx + gNy) = G · �g + g div(G). 

∂ρ ∂ρ Dρ 
(c) + div(F) = + v · �ρ + ρ div(v) = + ρ div(v), with the first 

∂t ∂t Dt 
equality by part(b) and the second by the general chain rule result for con
vective derivatives (p-set 5, #2). Thus the equation of continuity defined as 
∂ρ Dρ + div(F) = 0 holds if and only if + ρ div(v) = 0, from which it 
∂t Dt 

Dρ 
follows that = 0 if and only if div(v) = 0. 

Dt 

3. (i). Circular flow rotating around the origin O, speeding up with time. 
∂ρ = 0, v ·�ρ = 0 and div(v) = 0, for all (x, y, t), so by 4(c) above the eqn. 
∂t 
of continuity is satisfied. div(v) = 0, so the flow is incompressible; and since 
flow is not homogeneous (i.e. the density is not constant), it is stratified. 
(Even though the flow is not steady, we do have ρ = ρ(x, y) only, and so 
incompressibility implies that v · �ρ = 0, as in p-set 5 #3(b); in this case 
this is also clear, since the gradients of the density �ρ = 

r 
1 �x, y� are radial.) 

(ii). The flow paths are hyperbolas (as in p-set 7 #5 case C). The flow is 
slowing down with time. Again by direct computation we see that ∂ρ = 0,

∂t 
v · �ρ = 0 and div(v) = 0, for all (x, y, t), so the equation of continuity is 
satisfied; div(v) = 0 gives that flow is incompressible; and since flow is not 
homogeneous, it is stratified, again with ρ = ρ(x, y) only, and v · �ρ = 0. 

(iii). The flow is radial outward from the origin. The flow paths are half-
rays, i.e. straight lines starting from O. The flow is speeding up with time. 

∂ρ −2 t e−t2 
e−t2 

We compute 
∂t = , and div(ρ(t)v) = ρ(t) div(v) = 2 t, so the 

equation of continuity is satisfied. However div(v) = 2 t = 0, so the flow is 
not incompressible. 

Additional material (optional - for those who are interested in the completion 
of this the story): we need to show, as promised in p-set 7, that ‘volume
incompressibility,’ as defined in p-set 7 #5, is equivalent to the original def-

Dρ inition of incompressibility as 
Dt = 0. This now goes via the equivalent 

condition div(v) = 0 as follows. First, the chain rule is used to prove that 
if |J(x, y, z, t)| is the Jacobian determinant of the flow map ϕ(x, y, z, t) (in 
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the general 3D case), then |J | satisfies the equation 

∂ J

∂t 
| | 

= |J | div(v). 

(This takes a bit of work, but it’s true.) 
Thus |J(x, y, z, t)| is constant in t if and only if div(v) = 0, i.e. if and only 
if the flow is incompressible. 
To show that this constant is equal to 1 for all (x, y, z), we combine the 
equation |J(x, y, z, t)| = |J(x, y, z, 0)| for all t (i.e. |J(x, y, z, t)| is constant 
in t) with the equation |J(x, y, z, 0)| = 1 for all (x, y, z). To see the second 
equation, note that by definition the flow map ϕ(x, y, z, 0) = (x, y, z) is 
the identity map at t = 0, and also that the Jacobian of the identity map 
is identically equal to 1. This shows that a flow is incompressible if and 
only if |J(x, y, z, t)| = 1 for all (x, y, z, t), which is the condition for volume-
incompressibility. 
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