Proofs using vectors

1. The median of a triangle is a vector from a vertex to the midpoint of the opposite side. Show the sum of the medians of a triangle $=\mathbf{0}$.
Answer: The median of side $A B$ is the vector from vertex C to the midpoint of $A B$. Label this midpoint as P. As usual we write \mathbf{P} for the origin vector $\overrightarrow{\mathbf{O P}}$.
The midpoint $\mathbf{P}=\frac{1}{2}(\mathbf{A}+\mathbf{B}) \Rightarrow \overrightarrow{\mathbf{C P}}=\frac{1}{2}(\mathbf{B}+\mathbf{A})-\mathbf{C}$.
Likewise: $\quad \overrightarrow{\mathbf{B Q}}=\frac{1}{2}(\mathbf{A}+\mathbf{C})-\mathbf{B}$ and $\overrightarrow{\mathbf{A R}}=\frac{1}{2}(\mathbf{B}+\mathbf{C})-\mathbf{A}$.
\Rightarrow sum of medians is

$$
\overrightarrow{\mathbf{C P}}+\overrightarrow{\mathbf{B Q}}+\overrightarrow{\mathbf{A R}}=\left(\frac{1}{2}(\mathbf{B}+\mathbf{A})-\mathbf{C}\right)+\left(\frac{1}{2}(\mathbf{A}+\mathbf{C})-\mathbf{B}\right)+\left(\frac{1}{2}(\mathbf{B}+\mathbf{C})-\mathbf{A}\right)=0
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

