EXAM 2 PRACTICE MATERIALS

Definitions and Theorems

(1) Let $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a vector field. State what it means for \mathbf{f} to be differentiable.
(2) Assume \mathbf{f} as above is differentiable. Give the definition for $D_{k} \mathbf{f}$.
(3) Let $\mathbf{h}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be defined such that $\mathbf{h}(\mathbf{x})=\mathbf{g}(\mathbf{f}(\mathbf{x}))$ where $\mathbf{g}: \mathbb{R}^{k} \rightarrow$ $\mathbb{R}^{m}, \mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$.
State the chain rule in this generality.
Then use more appropriate notation to describe the specific case when $n=m=1$ and $k \neq 1$.
Do the same for when $n=k=1$ and $m \neq 1$.
(4) State the implicit function theorem for scalar fields.
(5) State the second derivative test for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
(6) State Taylor's Theorem for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
(7) State the two fundamental theorems of calculus for line integrals.
(8) State the necessary and sufficient condition for a vector field to be a gradient vector field on an open, convex $S \subset \mathbb{R}^{n}$. Now state a necessary and sufficient condition for a vector field to be a gradient field when S is open and connected.
(9) Define a bounded set of content zero.
(10) State the definition of an integrable function on a rectangle in \mathbb{R}^{2}.
(11) State Fubini's Theorem.

Problems

(1) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a scalar field. For each of the following questions, answer "yes" or "no". If the answer is "yes", cite a theorem or give a brief sketch of a proof. If the answer is "no", provide a counterexample.
(a) Suppose $f^{\prime}(\mathbf{a} ; \mathbf{x})$ exists for all $\mathbf{x} \in \mathbb{R}^{2}$. Is f continuous at \mathbf{a} ?
(b) Suppose $D_{1} f, D_{2} f$ both exist at \mathbf{a}. Does $f^{\prime}(\mathbf{a} ; \mathbf{x})$ exist for all $\mathbf{x} \in \mathbb{R}^{2}$?
(c) Suppose f is differentiable at \mathbf{a}. Is f continuous at a?
(d) Suppose $D_{1} f, D_{2} f$ both exist at a and are continuous in a neighborhood of \mathbf{a}. Is f continuous at a?
(2) Let $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $\mathbf{f}(x, y)=\left(x^{2}+y, 2 x+y^{2}\right)$.

Find $D \mathbf{f}$ and determine the values of (x, y) for which \mathbf{f} is NOT invertible. Given that \mathbf{f} is invertible at $(0,0)$, let \mathbf{g} be its inverse. Find $D \mathbf{g}(0,0)$.
(3) Let $f(x, y, z)=2 x^{2} y+x y^{2} z+x y z$ and consider the level surface $f(x, y, z)=$ 4.

Find the tangent plane at $(x, y, z)=(1,1,1)$.
Explain why it is possible to find a function $g(x, y)$, defined in a neighborhood of $(x, y)=(1,1)$ such that a neighborhood of $(1,1,1)$ on the surface $f(x, y, z)=4$ can be written as a graph $(x, y, g(x, y))$.
(4) Find all extreme values for $f(x, y, z)=x^{2}+2 y^{2}+4 z^{2}$ subject to the constraint $x+y+z=7$. Justify whether the extreme values are maximum or a minimum.
(5) Let $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a differentiable vector field with $\mathbf{f}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$. We define the divergence of \mathbf{f} such that

$$
\operatorname{div}(\mathbf{f})=\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial x_{i}}
$$

Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth scalar field. Prove that

$$
\operatorname{div}(\nabla g)=\sum_{i=1}^{n} \frac{\partial^{2} g}{\partial x_{i}^{2}}
$$

(6) Assume f, g are integrable on the rectangle $Q \subset \mathbb{R}^{2}$ and let $a, b \in \mathbb{R}$. Given the linearity of the integral for step functions, prove $\iint_{Q}(a f+b g) d x d y=$ $a \iint_{Q} f d x d y+b \iint_{Q} g d x d y$.

MIT OpenCourseWare
http://ocw.mit.edu

18.024 Multivariable Calculus with Theory

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

