EXAM 1 PRACTICE MATERIALS

(1) Let A be an $m \times n$ matrix and r be the rank of A.
(a) Describe the dimension of the solution space of the equation $A \mathbf{x}=\mathbf{0}$ in terms of m, n, r.
(b) Suppose there exists \mathbf{c} such that $A \mathbf{x}=\mathbf{c}$ does not have a solution. What can you say about m, n, r ?
(c) If A is invertible, what is the relationship between m, n and r ?
(2) Let $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be a basis for the vector space V. Consider the set $\left\{\sum_{i=1}^{n} c_{1 i} x_{i}, \cdots, \sum_{i=1}^{n} c_{n i} x_{i}\right\}$ for $c_{j i} \in \mathbb{R}$. Is this still a basis for V ? Prove it either way.
(3) Let A, B and C be three vectors (or points) in \mathbb{R}^{3}. Let M be the 3×3 matrix that has A, B and C as its rows (from top to bottom).
(a) Show that $|\operatorname{det} M| \leq\|A \mid\|\|B\|\|C\|$.
(b) Show that if $\{A, B, C\}$ is an orthogonal set then $\operatorname{det} M= \pm\|A\|\|B\|\|C\|$. When does one get $\mathrm{a}+$ and when $\mathrm{a}-$?
(c) Is it true that if $|\operatorname{det} M|=\|A|\|| | B\| \| C| \mid$ then $\{A, B, C\}$ is orthogonal?
(4) Let L be a map from \mathbb{R}^{3} to \mathbb{R}^{2} for which

$$
L(u+v)=L(u)+L(v) \quad\left(u, v \in \mathbb{R}^{3}\right) .
$$

(a) Show that $L(n v)=n L(v)$ for any integer n and $v \in \mathbb{R}^{3}$;
(b) Show that $L\left(\frac{1}{n} v\right)=\frac{1}{n} L(v)$ for any integer n and $v \in \mathbb{R}^{3}$;
(c) Show that $L\left(\frac{m}{n} v\right)=\frac{n}{m} L(v)$ for any rational number $\frac{n}{m}$ and $v \in \mathbb{R}^{3}$;
(d) Conclude that if L is continous, then L must be linear. (We say L is continuous at y if $\|L(x)-L(y)\| \rightarrow 0$ when $\|x-y\| \rightarrow 0$.)
(5) Consider the function

$$
f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \frac{1}{x^{2}+y^{2}} & \text { if } x^{2}+y^{2} \neq 0 \\ 0 & \text { if } x=y=0\end{cases}
$$

(a) Show that the partial derivatives of f are discontinuous at $(0,0)$;
(b) Show that the partial derivatives of f are not bounded in any balls around $(0,0)$;
(c) Show that f is differentiable at $(0,0)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.024 Multivariable Calculus with Theory

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

