Practice Exam 2 Solutions

Problem 1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a scalar field. For each of the following questions, answer "yes" or "no". If the answer is "yes", cite a theorem or give a brief sketch of a proof. If the answer is "no", provide a counterexample.

1. Suppose $f^{\prime}(\mathbf{a} ; \mathbf{x})$ exists for all $\mathbf{x} \in \mathbb{R}^{2}$. Is f continuous at \mathbf{a} ?
2. Suppose $D_{1} f, D_{2} f$ both exist at a. Does $f^{\prime}(\mathbf{a} ; \mathbf{x})$ exist for all $\mathbf{x} \in \mathbb{R}^{2}$?
3. Suppose f is differentiable at a. Is f continuous at a?
4. Suppose $D_{1} f, D_{2} f$ both exist at a and are continuous in a neighborhood of a. Is f continuous at a?

Solution

1. No. See the example on page 257 in the book.
2. No. Define

$$
f(x, y)=\left\{\begin{array}{l}
0 \text { if } x \neq y \text { or if }(x, y)=(0,0) \\
1 \text { if } x=y, x \neq 0
\end{array}\right.
$$

Then $D_{1} f=D_{2} f=0$ at the origin. But consider $f^{\prime}((0,0) ;(1,1))$. By definition this is

$$
\lim _{h \rightarrow 0} \frac{f(h, h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{1}{h} .
$$

Since this blows up, we see $f^{\prime}((0,0) ;(1,1))$ does not exist.
3. Yes. We proved this in class. (Also Theorem 8.6 in the book.)
4. Yes. This implies that f is differentiable, and then continuity follows from the previous statement. (See Theorem 8.7 in the book.)

Problem 2. Let $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $\mathbf{f}(x, y)=\left(x^{2}+y, 2 x+y^{2}\right)$.
Find $D \mathbf{f}$ and determine the values of (x, y) for which \mathbf{f} is NOT invertible. Given that \mathbf{f} is invertible at $(0,0)$, let \mathbf{g} be its inverse. Find $D \mathbf{g}(0,0)$.

Solution First, we determine

$$
D \mathbf{f}(x, y)=\left(\begin{array}{cc}
2 x & 1 \\
2 & 2 y
\end{array}\right)
$$

So, $\operatorname{det}(D \mathbf{f})=4 x y-2$ and thus $\operatorname{det}(D \mathbf{f})=0$ whenever $x y=1 / 2$. Second, note

$$
D \mathbf{g}(0,0)=(D \mathbf{f}(0,0))^{-1}=\frac{1}{-2}\left(\begin{array}{cc}
2 \cdot 0 & -1 \\
-2 & 2 \cdot 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 / 2 \\
1 & 0
\end{array}\right)
$$

Problem 3: Let $f(x, y, z)=2 x^{2} y+x y^{2} z+x y z$ and consider the level surface $f(x, y, z)=4$.
Find the tangent plane at $(x, y, z)=(1,1,1)$.
Explain why it is possible to find a function $g(x, y)$, defined in a neighborhood of $(x, y)=(1,1)$ such that a neighborhood of $(1,1,1)$ on the surface $f(x, y, z)=4$ can be written as a graph $(x, y, g(x, y))$.

Solution As $\nabla f(1,1,1)=(4+1+1,2+2+1,1+1)=(6,5,2)$, we write the equation for the tangent plane as

$$
\nabla f(1,1,1) \cdot(x-1, y-1, z-1)=0
$$

or

$$
(6,5,2)(x-1, y-1, z-1)=6 x-6+5 y-5+2 z-2=6 x+5 y+2 z-13=0
$$

Since $\frac{\partial f}{\partial z}(1,1,1) \neq 0$, the implicit function theorem states that there exists a function $g(x, y)$ defined in a neighborhood of $(1,1)$ such that $(x, y, g(x, y))$ is a neighborhood of $(1,1,1)$ on the surface $f(x, y, z)-4=0($ or $f(x, y, z)=4)$.

Problem 4. Find all extreme values for $f(x, y, z)=x^{2}+2 y^{2}+4 z^{2}$ subject to the constraint $x+y+z=7$. Justify whether the extreme values are maximum or a minimum.

Solution We find the extreme values using Lagrange multipliers. Let $g(x, y, z)=$ $x+y+z-7$. Then there exists a λ such that $\nabla f=\lambda \nabla g$ at any extreme value. Calculating, we see

$$
(2 x, 4 y, 8 z)=\lambda(1,1,1)
$$

or

$$
(x, y, z)=\left(\frac{\lambda}{2}, \frac{\lambda}{4}, \frac{\lambda}{8}\right)
$$

Now we use the fact that $x+y+z=7$ to solve for λ and thus for (x, y, z). That is, the constraint implies

$$
\lambda\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\right)=\frac{7 \lambda}{8}=7
$$

Given that $\lambda=8$ we find $(x, y, z)=(4,2,1)$ at the only extreme value.
Now observe that as $\|(x, y, z)\| \rightarrow \infty, f(x, y, z) \rightarrow \infty$. Therefore, with only one extreme value, $f(4,2,1)$ must be a minimum.

Problem 5. Let $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a differentiable vector field with $\mathbf{f}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$. We define the divergence of \mathbf{f} such that

$$
\operatorname{div}(\mathbf{f})=\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial x_{i}}
$$

Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth scalar field. Prove that

$$
\operatorname{div}(\nabla g)=\sum_{i=1}^{n} \frac{\partial^{2} g}{\partial x_{i}^{2}}
$$

Solution The proof will follow immediately from the definitions. First, observe that

$$
\nabla g=\left(D_{1} g, D_{2} g, \ldots, D_{n} g\right)
$$

Now by definition,

$$
\operatorname{div}(\nabla g)=\sum_{i=1}^{n} \frac{\partial D_{i} g}{\partial x_{i}}=\sum_{i=1}^{n} \frac{\partial^{2} g}{\partial x_{i}^{2}}
$$

Problem 6: Assume f, g are integrable on the rectangle $Q \subset \mathbb{R}^{2}$ and let $a, b \in \mathbb{R}$. Given the linearity of the integral for step functions, prove $\iint_{Q}(a f+b g) d x d y=$ $a \iint_{Q} f d x d y+b \iint_{Q} g d x d y$.

Solution We first prove that $a f+b g$ is integrable on Q and then determine the value of this integral.

By the Riemann condition, for any $\epsilon>0$ there exist step functions $s_{f}, s_{g}, t_{f}, t_{g}$ with $s_{f} \leq f \leq t_{f}, s_{g} \leq g \leq t_{g}$ and

$$
\iint_{Q}\left(t_{f}-s_{f}\right)<\epsilon /(2 a), \quad \iint_{Q}\left(t_{g}-s_{g}\right)<\epsilon /(2 b) .
$$

As expected, let $s=a s_{f}+b s_{g}$ and $t=a t_{f}+b t_{g}$. Immediately we have $s \leq a f+b g \leq t$ for all $\mathbf{x} \in Q$. Also, the linearity of the double integral for step functions implies
$\iint_{Q}(t-s)=\iint_{Q}\left(a\left(t_{f}-s_{f}\right)+b\left(t_{g}-s_{g}\right)\right)=a \iint_{Q} t_{f}-s_{f}+b \iint_{Q} t_{g}-s_{g}<a \frac{\epsilon}{2 a}+b \frac{\epsilon}{2 b}=\epsilon$.
So the Riemann condition implies $a f+b g$ is integrable.
Now the value of $\iint_{Q}(a f+b g) d x d y$ is determined to be the real number A such that for $\epsilon>0$ and step functions s, t with $s \leq a f+b g \leq t$ and $\iint_{Q} t-s<\epsilon$,

$$
\iint_{Q} s \leq A \leq \iint_{Q} t
$$

But note that
$\iint_{Q} s=a \iint_{Q} s_{f}+b \iint_{Q} s_{g} \leq a \iint_{Q} f+b \iint_{Q} g \leq a \iint_{Q} t_{f}+b \iint_{Q} t_{g}=\iint_{Q} t$.
Thus $A=a \iint_{Q} f+b \iint_{Q} g$ which gives the result.

MIT OpenCourseWare
http://ocw.mit.edu

18.024 Multivariable Calculus with Theory

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

